Boosting Gaussian mixtures in an LVCSR system

G. Zweig, M. Padmanabhan
{"title":"Boosting Gaussian mixtures in an LVCSR system","authors":"G. Zweig, M. Padmanabhan","doi":"10.1109/ICASSP.2000.861945","DOIUrl":null,"url":null,"abstract":"In this paper, we apply boosting to the problem of frame-level phone classification, and use the resulting system to perform voicemail transcription. We develop parallel, hierarchical, and restricted versions of the classic AdaBoost algorithm, which enable the technique to be used in large-scale speech recognition tasks with hundreds of thousands of Gaussians and tens of millions of training frames. We report small but consistent improvements in both frame recognition accuracy and word error rate.","PeriodicalId":164817,"journal":{"name":"2000 IEEE International Conference on Acoustics, Speech, and Signal Processing. Proceedings (Cat. No.00CH37100)","volume":"44 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2000-06-05","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"38","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"2000 IEEE International Conference on Acoustics, Speech, and Signal Processing. Proceedings (Cat. No.00CH37100)","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1109/ICASSP.2000.861945","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 38

Abstract

In this paper, we apply boosting to the problem of frame-level phone classification, and use the resulting system to perform voicemail transcription. We develop parallel, hierarchical, and restricted versions of the classic AdaBoost algorithm, which enable the technique to be used in large-scale speech recognition tasks with hundreds of thousands of Gaussians and tens of millions of training frames. We report small but consistent improvements in both frame recognition accuracy and word error rate.
LVCSR系统中高斯混合的增强
在本文中,我们将增强应用于帧级电话分类问题,并使用生成的系统进行语音邮件转录。我们开发了经典AdaBoost算法的并行、分层和限制版本,使该技术能够用于具有数十万高斯和数千万训练帧的大规模语音识别任务。我们报告了帧识别精度和单词错误率的小幅但一致的改进。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 求助全文
来源期刊
自引率
0.00%
发文量
0
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信