Fast Human Pose Estimation using Appearance and Motion via Multi-Dimensional Boosting Regression

A. Bissacco, Ming-Hsuan Yang, Stefano Soatto
{"title":"Fast Human Pose Estimation using Appearance and Motion via Multi-Dimensional Boosting Regression","authors":"A. Bissacco, Ming-Hsuan Yang, Stefano Soatto","doi":"10.1109/CVPR.2007.383129","DOIUrl":null,"url":null,"abstract":"We address the problem of estimating human pose in video sequences, where rough location has been determined. We exploit both appearance and motion information by defining suitable features of an image and its temporal neighbors, and learning a regression map to the parameters of a model of the human body using boosting techniques. Our algorithm can be viewed as a fast initialization step for human body trackers, or as a tracker itself. We extend gradient boosting techniques to learn a multi-dimensional map from (rotated and scaled) Haar features to the entire set of joint angles representing the full body pose. We test our approach by learning a map from image patches to body joint angles from synchronized video and motion capture walking data. We show how our technique enables learning an efficient real-time pose estimator, validated on publicly available datasets.","PeriodicalId":351008,"journal":{"name":"2007 IEEE Conference on Computer Vision and Pattern Recognition","volume":"1 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2007-12-05","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"136","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"2007 IEEE Conference on Computer Vision and Pattern Recognition","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1109/CVPR.2007.383129","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 136

Abstract

We address the problem of estimating human pose in video sequences, where rough location has been determined. We exploit both appearance and motion information by defining suitable features of an image and its temporal neighbors, and learning a regression map to the parameters of a model of the human body using boosting techniques. Our algorithm can be viewed as a fast initialization step for human body trackers, or as a tracker itself. We extend gradient boosting techniques to learn a multi-dimensional map from (rotated and scaled) Haar features to the entire set of joint angles representing the full body pose. We test our approach by learning a map from image patches to body joint angles from synchronized video and motion capture walking data. We show how our technique enables learning an efficient real-time pose estimator, validated on publicly available datasets.
基于外观和运动的多维增强回归快速人体姿态估计
我们解决了在视频序列中估计人体姿势的问题,其中粗略的位置已经确定。我们通过定义图像及其时间邻居的合适特征来利用外观和运动信息,并使用增强技术学习到人体模型参数的回归映射。我们的算法可以被看作是人体跟踪器的快速初始化步骤,或者作为一个跟踪器本身。我们扩展了梯度增强技术,以学习从(旋转和缩放)Haar特征到代表全身姿势的整个关节角度集合的多维映射。我们通过从同步视频和动作捕捉步行数据中学习从图像补丁到身体关节角度的地图来测试我们的方法。我们展示了我们的技术如何能够学习一个有效的实时姿态估计器,并在公开可用的数据集上进行了验证。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 求助全文
来源期刊
自引率
0.00%
发文量
0
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信