{"title":"VIVID","authors":"Kuan-Ting Lai, Chia-Chih Lin, Chun-Yao Kang, Mei-Enn Liao, Ming-Syan Chen","doi":"10.1145/3240508.3243653","DOIUrl":null,"url":null,"abstract":"Due to the advances in deep reinforcement learning and the demand of large training data, virtual-to-real learning has gained lots of attention from computer vision community recently. As state-of-the-art 3D engines can generate photo-realistic images suitable for training deep neural networks, researchers have been gradually applied 3D virtual environment to learn different tasks including autonomous driving, collision avoidance, and image segmentation, to name a few. Although there are already many open-source simulation environments readily available, most of them either provide small scenes or have limited interactions with objects in the environment. To facilitate visual recognition learning, we present a new Virtual Environment for Visual Deep Learning (VIVID), which offers large-scale diversified indoor and outdoor scenes. Moreover, VIVID leverages the advanced human skeleton system, which enables us to simulate numerous complex human actions. VIVID has a wide range of applications and can be used for learning indoor navigation, action recognition, event detection, etc. We also release several deep learning examples in Python to demonstrate the capabilities and advantages of our system.","PeriodicalId":339857,"journal":{"name":"Proceedings of the 26th ACM international conference on Multimedia","volume":"407 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2018-10-15","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"16","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Proceedings of the 26th ACM international conference on Multimedia","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1145/3240508.3243653","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 16
Abstract
Due to the advances in deep reinforcement learning and the demand of large training data, virtual-to-real learning has gained lots of attention from computer vision community recently. As state-of-the-art 3D engines can generate photo-realistic images suitable for training deep neural networks, researchers have been gradually applied 3D virtual environment to learn different tasks including autonomous driving, collision avoidance, and image segmentation, to name a few. Although there are already many open-source simulation environments readily available, most of them either provide small scenes or have limited interactions with objects in the environment. To facilitate visual recognition learning, we present a new Virtual Environment for Visual Deep Learning (VIVID), which offers large-scale diversified indoor and outdoor scenes. Moreover, VIVID leverages the advanced human skeleton system, which enables us to simulate numerous complex human actions. VIVID has a wide range of applications and can be used for learning indoor navigation, action recognition, event detection, etc. We also release several deep learning examples in Python to demonstrate the capabilities and advantages of our system.