VIVID

Kuan-Ting Lai, Chia-Chih Lin, Chun-Yao Kang, Mei-Enn Liao, Ming-Syan Chen
{"title":"VIVID","authors":"Kuan-Ting Lai, Chia-Chih Lin, Chun-Yao Kang, Mei-Enn Liao, Ming-Syan Chen","doi":"10.1145/3240508.3243653","DOIUrl":null,"url":null,"abstract":"Due to the advances in deep reinforcement learning and the demand of large training data, virtual-to-real learning has gained lots of attention from computer vision community recently. As state-of-the-art 3D engines can generate photo-realistic images suitable for training deep neural networks, researchers have been gradually applied 3D virtual environment to learn different tasks including autonomous driving, collision avoidance, and image segmentation, to name a few. Although there are already many open-source simulation environments readily available, most of them either provide small scenes or have limited interactions with objects in the environment. To facilitate visual recognition learning, we present a new Virtual Environment for Visual Deep Learning (VIVID), which offers large-scale diversified indoor and outdoor scenes. Moreover, VIVID leverages the advanced human skeleton system, which enables us to simulate numerous complex human actions. VIVID has a wide range of applications and can be used for learning indoor navigation, action recognition, event detection, etc. We also release several deep learning examples in Python to demonstrate the capabilities and advantages of our system.","PeriodicalId":339857,"journal":{"name":"Proceedings of the 26th ACM international conference on Multimedia","volume":"407 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2018-10-15","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"16","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Proceedings of the 26th ACM international conference on Multimedia","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1145/3240508.3243653","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 16

Abstract

Due to the advances in deep reinforcement learning and the demand of large training data, virtual-to-real learning has gained lots of attention from computer vision community recently. As state-of-the-art 3D engines can generate photo-realistic images suitable for training deep neural networks, researchers have been gradually applied 3D virtual environment to learn different tasks including autonomous driving, collision avoidance, and image segmentation, to name a few. Although there are already many open-source simulation environments readily available, most of them either provide small scenes or have limited interactions with objects in the environment. To facilitate visual recognition learning, we present a new Virtual Environment for Visual Deep Learning (VIVID), which offers large-scale diversified indoor and outdoor scenes. Moreover, VIVID leverages the advanced human skeleton system, which enables us to simulate numerous complex human actions. VIVID has a wide range of applications and can be used for learning indoor navigation, action recognition, event detection, etc. We also release several deep learning examples in Python to demonstrate the capabilities and advantages of our system.
生动的
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 求助全文
来源期刊
自引率
0.00%
发文量
0
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信