Compact kernel models for acoustic modeling via random feature selection

Avner May, Michael Collins, Daniel J. Hsu, Brian Kingsbury
{"title":"Compact kernel models for acoustic modeling via random feature selection","authors":"Avner May, Michael Collins, Daniel J. Hsu, Brian Kingsbury","doi":"10.1109/ICASSP.2016.7472112","DOIUrl":null,"url":null,"abstract":"A simple but effective method is proposed for learning compact random feature models that approximate non-linear kernel methods, in the context of acoustic modeling. The method is able to explore a large number of non-linear features while maintaining a compact model via feature selection more efficiently than existing approaches. For certain kernels, this random feature selection may be regarded as a means of non-linear feature selection at the level of the raw input features, which motivates additional methods for computational improvements. An empirical evaluation demonstrates the effectiveness of the proposed method relative to the natural baseline method for kernel approximation.","PeriodicalId":165321,"journal":{"name":"2016 IEEE International Conference on Acoustics, Speech and Signal Processing (ICASSP)","volume":"118 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2016-03-23","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"4","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"2016 IEEE International Conference on Acoustics, Speech and Signal Processing (ICASSP)","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1109/ICASSP.2016.7472112","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 4

Abstract

A simple but effective method is proposed for learning compact random feature models that approximate non-linear kernel methods, in the context of acoustic modeling. The method is able to explore a large number of non-linear features while maintaining a compact model via feature selection more efficiently than existing approaches. For certain kernels, this random feature selection may be regarded as a means of non-linear feature selection at the level of the raw input features, which motivates additional methods for computational improvements. An empirical evaluation demonstrates the effectiveness of the proposed method relative to the natural baseline method for kernel approximation.
基于随机特征选择的声学建模的紧凑核模型
在声学建模的背景下,提出了一种简单而有效的方法来学习近似非线性核方法的紧凑随机特征模型。该方法能够探索大量的非线性特征,同时通过特征选择保持一个紧凑的模型,比现有方法更有效。对于某些核,这种随机特征选择可以看作是原始输入特征级别的非线性特征选择的一种手段,这激发了其他计算改进的方法。经验评价表明,相对于核近似的自然基线方法,所提出的方法是有效的。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 求助全文
来源期刊
自引率
0.00%
发文量
0
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信