Comparison of SPARLS and RLS algorithms for adaptive filtering

B. Babadi, N. Kalouptsidis, V. Tarokh
{"title":"Comparison of SPARLS and RLS algorithms for adaptive filtering","authors":"B. Babadi, N. Kalouptsidis, V. Tarokh","doi":"10.1109/SARNOF.2009.4850336","DOIUrl":null,"url":null,"abstract":"In this paper, we overview the Low Complexity Recursive L1-Regularized Least Squares (SPARLS) algorithm proposed in [2], for the estimation of sparse signals in an adaptive filtering setting. The SPARLS algorithm is based on an Expectation-Maximization type algorithm adapted for online estimation. Simulation results for the estimation of multi-path wireless channels show that the SPARLS algorithm has significant improvement over the conventional widely-used Recursive Least Squares (RLS) algorithm, in terms of both mean squared error (MSE) and computational complexity.","PeriodicalId":230233,"journal":{"name":"2009 IEEE Sarnoff Symposium","volume":"108 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2009-03-30","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"12","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"2009 IEEE Sarnoff Symposium","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1109/SARNOF.2009.4850336","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 12

Abstract

In this paper, we overview the Low Complexity Recursive L1-Regularized Least Squares (SPARLS) algorithm proposed in [2], for the estimation of sparse signals in an adaptive filtering setting. The SPARLS algorithm is based on an Expectation-Maximization type algorithm adapted for online estimation. Simulation results for the estimation of multi-path wireless channels show that the SPARLS algorithm has significant improvement over the conventional widely-used Recursive Least Squares (RLS) algorithm, in terms of both mean squared error (MSE) and computational complexity.
自适应滤波中SPARLS和RLS算法的比较
在本文中,我们概述了[2]中提出的用于自适应滤波设置中稀疏信号估计的低复杂度递归l1 -正则化最小二乘(SPARLS)算法。SPARLS算法基于一种适合在线估计的期望最大化算法。对多径无线信道估计的仿真结果表明,SPARLS算法在均方误差(MSE)和计算复杂度方面都比传统的递归最小二乘(RLS)算法有显著提高。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 求助全文
来源期刊
自引率
0.00%
发文量
0
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信