L. Jaffke, O-joung Kwon, Torstein J. F. Strømme, J. A. Telle
{"title":"Generalized distance domination problems and their complexity on graphs of bounded mim-width","authors":"L. Jaffke, O-joung Kwon, Torstein J. F. Strømme, J. A. Telle","doi":"10.4230/LIPIcs.IPEC.2018.6","DOIUrl":null,"url":null,"abstract":"We generalize the family of $(\\sigma, \\rho)$-problems and locally checkable vertex partition problems to their distance versions, which naturally captures well-known problems such as distance-$r$ dominating set and distance-$r$ independent set. We show that these distance problems are XP parameterized by the structural parameter mim-width, and hence polynomial on graph classes where mim-width is bounded and quickly computable, such as $k$-trapezoid graphs, Dilworth $k$-graphs, (circular) permutation graphs, interval graphs and their complements, convex graphs and their complements, $k$-polygon graphs, circular arc graphs, complements of $d$-degenerate graphs, and $H$-graphs if given an $H$-representation. To supplement these findings, we show that many classes of (distance) $(\\sigma, \\rho)$-problems are W[1]-hard parameterized by mim-width + solution size.","PeriodicalId":137775,"journal":{"name":"International Symposium on Parameterized and Exact Computation","volume":"19 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2018-03-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"12","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"International Symposium on Parameterized and Exact Computation","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.4230/LIPIcs.IPEC.2018.6","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 12
Abstract
We generalize the family of $(\sigma, \rho)$-problems and locally checkable vertex partition problems to their distance versions, which naturally captures well-known problems such as distance-$r$ dominating set and distance-$r$ independent set. We show that these distance problems are XP parameterized by the structural parameter mim-width, and hence polynomial on graph classes where mim-width is bounded and quickly computable, such as $k$-trapezoid graphs, Dilworth $k$-graphs, (circular) permutation graphs, interval graphs and their complements, convex graphs and their complements, $k$-polygon graphs, circular arc graphs, complements of $d$-degenerate graphs, and $H$-graphs if given an $H$-representation. To supplement these findings, we show that many classes of (distance) $(\sigma, \rho)$-problems are W[1]-hard parameterized by mim-width + solution size.