Classification of Coronary Calcifications using Deep Learning Approach: A Feasibility Study with the orCaScore Database

Jessica Cristina Santos do Nascimento, Italo Francyles Santos da Silva, A. Silva, A. Paiva
{"title":"Classification of Coronary Calcifications using Deep Learning Approach: A Feasibility Study with the orCaScore Database","authors":"Jessica Cristina Santos do Nascimento, Italo Francyles Santos da Silva, A. Silva, A. Paiva","doi":"10.5753/sbcas_estendido.2023.230145","DOIUrl":null,"url":null,"abstract":"This document presents a deep learning method for the automatic detection and classification of calcified lesions in coronary arteries using Convolutional Neural Networks (CNN) based on the AlexNet architecture. The demonstration of this proposal uses orCaScore, a standardized and labeled database of low-dose radiation computed tomography (CT) images of the heart. The methodology division was designed starting with the region of interest (ROI) extraction for consecutively utilizing a patch-based approach. We tested this approach in 7,386 patches and achieved an accuracy of 67%, sensitivity of 100%, precision of 67% and specificity of 75%. Our technique aims to reinforce the detection and quantification of coronary calcified lesions, enabling accurate diagnosis and treatment of cardiovascular diseases.","PeriodicalId":354386,"journal":{"name":"Anais Estendidos do XXIII Simpósio Brasileiro de Computação Aplicada à Saúde (SBCAS 2023)","volume":"35 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2023-06-27","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Anais Estendidos do XXIII Simpósio Brasileiro de Computação Aplicada à Saúde (SBCAS 2023)","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.5753/sbcas_estendido.2023.230145","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 0

Abstract

This document presents a deep learning method for the automatic detection and classification of calcified lesions in coronary arteries using Convolutional Neural Networks (CNN) based on the AlexNet architecture. The demonstration of this proposal uses orCaScore, a standardized and labeled database of low-dose radiation computed tomography (CT) images of the heart. The methodology division was designed starting with the region of interest (ROI) extraction for consecutively utilizing a patch-based approach. We tested this approach in 7,386 patches and achieved an accuracy of 67%, sensitivity of 100%, precision of 67% and specificity of 75%. Our technique aims to reinforce the detection and quantification of coronary calcified lesions, enabling accurate diagnosis and treatment of cardiovascular diseases.
使用深度学习方法进行冠状动脉钙化分类:orCaScore数据库的可行性研究
本文提出了一种基于AlexNet架构的卷积神经网络(CNN)的冠状动脉钙化病变自动检测和分类的深度学习方法。该建议的演示使用orCaScore,这是一个标准化和标记的心脏低剂量辐射计算机断层扫描(CT)图像数据库。从感兴趣区域(ROI)提取开始,设计了方法划分,依次采用基于patch的方法。我们对7386块贴片进行了测试,准确度为67%,灵敏度为100%,精密度为67%,特异性为75%。我们的技术旨在加强冠状动脉钙化病变的检测和量化,使心血管疾病的准确诊断和治疗。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 求助全文
来源期刊
自引率
0.00%
发文量
0
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信