Classification of Stroke and Non-Stroke Patients from Human Body Movements using Smartphone Videos and Deep Neural Networks

Zafira Binta Feliandra, Siti Khadijah, M. F. Rachmadi, D. Chahyati
{"title":"Classification of Stroke and Non-Stroke Patients from Human Body Movements using Smartphone Videos and Deep Neural Networks","authors":"Zafira Binta Feliandra, Siti Khadijah, M. F. Rachmadi, D. Chahyati","doi":"10.1109/ICACSIS56558.2022.9923501","DOIUrl":null,"url":null,"abstract":"This study covers a pilot study on developing a tele-health system for detection and classification of stroke and non-stroke patients from human body movements using smartphone videos. Human body poses are extracted from smartphone videos which are then transformed into RGB images and classified into either stroke (positive) or non-stroke (negative) labels. We tested PoseNet, BlazePose, and MoveNet for human body pose detection and AlexN et and SqueezeN et for classification. From this pilot study, we found that MoveNet is the best human body pose detection while AlexNet is the best for classification.","PeriodicalId":165728,"journal":{"name":"2022 International Conference on Advanced Computer Science and Information Systems (ICACSIS)","volume":"357 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2022-10-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"3","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"2022 International Conference on Advanced Computer Science and Information Systems (ICACSIS)","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1109/ICACSIS56558.2022.9923501","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 3

Abstract

This study covers a pilot study on developing a tele-health system for detection and classification of stroke and non-stroke patients from human body movements using smartphone videos. Human body poses are extracted from smartphone videos which are then transformed into RGB images and classified into either stroke (positive) or non-stroke (negative) labels. We tested PoseNet, BlazePose, and MoveNet for human body pose detection and AlexN et and SqueezeN et for classification. From this pilot study, we found that MoveNet is the best human body pose detection while AlexNet is the best for classification.
使用智能手机视频和深度神经网络从人体运动中分类中风和非中风患者
本研究涵盖了一项开发远程医疗系统的试点研究,该系统使用智能手机视频从人体运动中检测和分类中风和非中风患者。从智能手机视频中提取人体姿势,然后将其转换为RGB图像,并将其分类为笔画(正面)或非笔画(负面)标签。我们测试了PoseNet, BlazePose和MoveNet用于人体姿势检测,AlexN et和SqueezeN et用于分类。从这个初步研究中,我们发现MoveNet是最好的人体姿势检测,AlexNet是最好的分类。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 求助全文
来源期刊
自引率
0.00%
发文量
0
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信