{"title":"A parallel root-finding method for omnidirectional image unwrapping","authors":"N. Chong, M. D. Wong, Y. Kho","doi":"10.1109/VCIP.2013.6706340","DOIUrl":null,"url":null,"abstract":"The panoramic unwrapping of catadioptric omnidirectional view (COV) sensors have mostly relied on a precomputed mapping look-up table due to an expensive computational load that generally has its bottleneck occur at solving a sextic polynomial. However, this approach causes a limitation to the viewpoint dynamics as runtime modifications to the mapping values are not allowed in the implementation. In this paper, a parallel root-finding technique using Compute Unified Device Architecture (CUDA) platform is proposed. The proposed method enables on-the-fly computation of the mapping look-up table thus facilitate in a real-time viewpoint adjustable panoramic unwrapping. Experimental results showed that the proposed implementation incurred minimum computational load, and performed at 10.3 times and 2.3 times the speed of a current generation central processing unit (CPU) respectively on a single-core and multi-core environment.","PeriodicalId":407080,"journal":{"name":"2013 Visual Communications and Image Processing (VCIP)","volume":"42 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2013-11-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"1","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"2013 Visual Communications and Image Processing (VCIP)","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1109/VCIP.2013.6706340","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 1
Abstract
The panoramic unwrapping of catadioptric omnidirectional view (COV) sensors have mostly relied on a precomputed mapping look-up table due to an expensive computational load that generally has its bottleneck occur at solving a sextic polynomial. However, this approach causes a limitation to the viewpoint dynamics as runtime modifications to the mapping values are not allowed in the implementation. In this paper, a parallel root-finding technique using Compute Unified Device Architecture (CUDA) platform is proposed. The proposed method enables on-the-fly computation of the mapping look-up table thus facilitate in a real-time viewpoint adjustable panoramic unwrapping. Experimental results showed that the proposed implementation incurred minimum computational load, and performed at 10.3 times and 2.3 times the speed of a current generation central processing unit (CPU) respectively on a single-core and multi-core environment.