QuAX

Muhammad Shihab Rashid, Fuad Jamour, Vagelis Hristidis
{"title":"QuAX","authors":"Muhammad Shihab Rashid, Fuad Jamour, Vagelis Hristidis","doi":"10.1145/3459637.3482289","DOIUrl":null,"url":null,"abstract":"Frequently Asked Questions (FAQ) are a form of semi-structured data that provides users with commonly requested information and enables several natural language processing tasks. Given the plethora of such question-answer pairs on the Web, there is an opportunity to automatically build large FAQ collections for any domain, such as COVID-19 or Plastic Surgery. These collections can be used by several information-seeking portals and applications, such as AI chatbots. Automatically identifying and extracting such high-utility question-answer pairs is a challenging endeavor, which has been tackled by little research work. For a question-answer pair to be useful to a broad audience, it must (i) provide general information -- not be specific to the Web site or Web page where it is hosted -- and (ii) must be self-contained -- not have references to other entities in the page or missing terms (ellipses) that render the question-answer pair ambiguous. Although identifying general, self-contained questions may seem like a straightforward binary classification problem, the limited availability of training data for this task and the countless domains make building machine learning models challenging. Existing efforts in extracting FAQs from the Web typically focus on FAQ retrieval without much regard to the utility of the extracted FAQ. We propose QuAX: a framework for extracting high-utility (i.e., general and self-contained) domain-specific FAQ lists from the Web. QuAX receives a set of keywords from a user, and works in a pipelined fashion to find relevant web pages and extract general and self-contained questions-answer pairs. We experimentally show how QuAX generates high-utility FAQ collections with little and domain-agnostic training data, and how the individual stages of the pipeline improve on the corresponding state-of-the-art.","PeriodicalId":405296,"journal":{"name":"Proceedings of the 30th ACM International Conference on Information & Knowledge Management","volume":"44 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2021-10-26","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Proceedings of the 30th ACM International Conference on Information & Knowledge Management","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1145/3459637.3482289","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 0

Abstract

Frequently Asked Questions (FAQ) are a form of semi-structured data that provides users with commonly requested information and enables several natural language processing tasks. Given the plethora of such question-answer pairs on the Web, there is an opportunity to automatically build large FAQ collections for any domain, such as COVID-19 or Plastic Surgery. These collections can be used by several information-seeking portals and applications, such as AI chatbots. Automatically identifying and extracting such high-utility question-answer pairs is a challenging endeavor, which has been tackled by little research work. For a question-answer pair to be useful to a broad audience, it must (i) provide general information -- not be specific to the Web site or Web page where it is hosted -- and (ii) must be self-contained -- not have references to other entities in the page or missing terms (ellipses) that render the question-answer pair ambiguous. Although identifying general, self-contained questions may seem like a straightforward binary classification problem, the limited availability of training data for this task and the countless domains make building machine learning models challenging. Existing efforts in extracting FAQs from the Web typically focus on FAQ retrieval without much regard to the utility of the extracted FAQ. We propose QuAX: a framework for extracting high-utility (i.e., general and self-contained) domain-specific FAQ lists from the Web. QuAX receives a set of keywords from a user, and works in a pipelined fashion to find relevant web pages and extract general and self-contained questions-answer pairs. We experimentally show how QuAX generates high-utility FAQ collections with little and domain-agnostic training data, and how the individual stages of the pipeline improve on the corresponding state-of-the-art.
求助全文
约1分钟内获得全文 求助全文
来源期刊
自引率
0.00%
发文量
0
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信