SECOND-Order Encoder and Restore Detail Decoder Network for Image Semantic Segmentation

Nan Dai, Zhiqiang Hou, Minjie Cheng
{"title":"SECOND-Order Encoder and Restore Detail Decoder Network for Image Semantic Segmentation","authors":"Nan Dai, Zhiqiang Hou, Minjie Cheng","doi":"10.1145/3573942.3574045","DOIUrl":null,"url":null,"abstract":"Traditional convolution and pooling operations in the previous semantic segmentation methods will cause the loss of feature information due to limited receptive field size. They are insufficient to support an accurate image prediction result. To solve this problem, Firstly, we design a Second-Order Encoder to enlarge the feature receptive field and capture more semantic context information. Secondly, we design a Restore Detail Decoder to focus on processing the spatial detail information and refining the object edges. The experiments verify the effectiveness of the proposed approach. The results show that our method achieves competitive performance on two datasets, including PASCAL VOC2012 and Cityscapes with the mIoU of 80.13% and 76.31%, respectively.","PeriodicalId":103293,"journal":{"name":"Proceedings of the 2022 5th International Conference on Artificial Intelligence and Pattern Recognition","volume":"23 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2022-09-23","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Proceedings of the 2022 5th International Conference on Artificial Intelligence and Pattern Recognition","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1145/3573942.3574045","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 0

Abstract

Traditional convolution and pooling operations in the previous semantic segmentation methods will cause the loss of feature information due to limited receptive field size. They are insufficient to support an accurate image prediction result. To solve this problem, Firstly, we design a Second-Order Encoder to enlarge the feature receptive field and capture more semantic context information. Secondly, we design a Restore Detail Decoder to focus on processing the spatial detail information and refining the object edges. The experiments verify the effectiveness of the proposed approach. The results show that our method achieves competitive performance on two datasets, including PASCAL VOC2012 and Cityscapes with the mIoU of 80.13% and 76.31%, respectively.
用于图像语义分割的二阶编码器和恢复细节解码器网络
以往的语义分割方法中,传统的卷积和池化操作由于接受域大小的限制,会造成特征信息的丢失。它们不足以支持准确的图像预测结果。为了解决这个问题,我们首先设计了一个二阶编码器来扩大特征接受场,捕获更多的语义上下文信息。其次,我们设计了一个还原细节解码器,重点处理空间细节信息和细化目标边缘。实验验证了该方法的有效性。结果表明,该方法在PASCAL VOC2012和cityscape两个数据集上的mIoU分别为80.13%和76.31%,具有较强的竞争力。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 求助全文
来源期刊
自引率
0.00%
发文量
0
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信