A novel reversible ternary embedding algorithm based on modified full context prediction errors

Li Li, Chinchen Chang, K. Bharanitharan, Yanjun Liu
{"title":"A novel reversible ternary embedding algorithm based on modified full context prediction errors","authors":"Li Li, Chinchen Chang, K. Bharanitharan, Yanjun Liu","doi":"10.1109/SIPROCESS.2016.7888318","DOIUrl":null,"url":null,"abstract":"We propose a high capacity reversible ternary embedding-watermarking algorithm based on a modification of full-context-prediction-errors (MFCPE) wherein the binary bit stream is converted to the ternary stream then error histogram shifting is utilized to embed the ternary stream. Unlike the existing predictor methods, we provide a full context prediction with a modification of each pixel at most by 1, which significantly reduces distortion. Experimental results confirm that the proposed algorithm achieves high PSNR while providing a higher embedding capacity. Also, results indicate that MFCPE outperforms the existing methods in terms of payload and the watermarked image quality.","PeriodicalId":142802,"journal":{"name":"2016 IEEE International Conference on Signal and Image Processing (ICSIP)","volume":"35 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2016-08-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"2016 IEEE International Conference on Signal and Image Processing (ICSIP)","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1109/SIPROCESS.2016.7888318","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 0

Abstract

We propose a high capacity reversible ternary embedding-watermarking algorithm based on a modification of full-context-prediction-errors (MFCPE) wherein the binary bit stream is converted to the ternary stream then error histogram shifting is utilized to embed the ternary stream. Unlike the existing predictor methods, we provide a full context prediction with a modification of each pixel at most by 1, which significantly reduces distortion. Experimental results confirm that the proposed algorithm achieves high PSNR while providing a higher embedding capacity. Also, results indicate that MFCPE outperforms the existing methods in terms of payload and the watermarked image quality.
一种基于修正全上下文预测误差的可逆三元嵌入算法
我们提出了一种基于全上下文预测错误(MFCPE)修正的高容量可逆三元嵌入水印算法,该算法将二进制位流转换为三元流,然后利用误差直方图移位来嵌入三元流。与现有的预测器方法不同,我们提供了一个完整的上下文预测,每个像素最多修改1,这大大减少了失真。实验结果表明,该算法在提供较高的嵌入容量的同时,实现了较高的信噪比。结果表明,MFCPE在有效载荷和水印图像质量方面都优于现有方法。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 求助全文
来源期刊
自引率
0.00%
发文量
0
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信