Compressed sensing for digital holographic microscopy

M. Marim, M. Atlan, E. Angelini, J. Olivo-Marin
{"title":"Compressed sensing for digital holographic microscopy","authors":"M. Marim, M. Atlan, E. Angelini, J. Olivo-Marin","doi":"10.1109/ISBI.2010.5490084","DOIUrl":null,"url":null,"abstract":"This paper describes an original microscopy imaging framework successfully employing Compressed Sensing for digital holography. Our approach combines a sparsity minimization algorithm to reconstruct the image and digital holography to perform quadrature-resolved random measurements of an optical field in a diffraction plane. Compressed Sensing is a recent theory establishing that near-exact recovery of an unknown sparse signal is possible from a small number of non-structured measurements. We demonstrate with practical experiments on holographic microscopy images of cerebral blood flow that our CS approach enables optimal reconstruction from a very limited number of measurements while being robust to high noise levels.","PeriodicalId":250523,"journal":{"name":"2010 IEEE International Symposium on Biomedical Imaging: From Nano to Macro","volume":"55 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2010-04-14","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"3","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"2010 IEEE International Symposium on Biomedical Imaging: From Nano to Macro","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1109/ISBI.2010.5490084","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 3

Abstract

This paper describes an original microscopy imaging framework successfully employing Compressed Sensing for digital holography. Our approach combines a sparsity minimization algorithm to reconstruct the image and digital holography to perform quadrature-resolved random measurements of an optical field in a diffraction plane. Compressed Sensing is a recent theory establishing that near-exact recovery of an unknown sparse signal is possible from a small number of non-structured measurements. We demonstrate with practical experiments on holographic microscopy images of cerebral blood flow that our CS approach enables optimal reconstruction from a very limited number of measurements while being robust to high noise levels.
用于数字全息显微镜的压缩传感
本文描述了一个原始的显微镜成像框架,成功地将压缩感知应用于数字全息。我们的方法结合了稀疏最小化算法来重建图像和数字全息术来执行衍射平面上光场的正交分辨随机测量。压缩感知是一种最新的理论,它建立了从少量非结构化测量中近乎精确地恢复未知稀疏信号的可能性。我们通过对脑血流全息显微镜图像的实际实验证明,我们的CS方法能够从非常有限的测量中实现最佳重建,同时对高噪声水平具有鲁棒性。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 求助全文
来源期刊
自引率
0.00%
发文量
0
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信