SuPP & MaPP: Adaptable Structure-Based Representations for MIR Tasks

C. Savard, Erin H. Bugbee, Melissa R. McGuirl, Katherine M. Kinnaird
{"title":"SuPP & MaPP: Adaptable Structure-Based Representations for MIR Tasks","authors":"C. Savard, Erin H. Bugbee, Melissa R. McGuirl, Katherine M. Kinnaird","doi":"10.5281/ZENODO.4245438","DOIUrl":null,"url":null,"abstract":"Accurate and flexible representations of music data are paramount to addressing MIR tasks, yet many of the existing approaches are difficult to interpret or rigid in nature. This work introduces two new song representations for structure-based retrieval methods: Surface Pattern Preservation (SuPP), a continuous song representation, and Matrix Pattern Preservation (MaPP), SuPP’s discrete counterpart. These representations come equipped with several user-defined parameters so that they are adaptable for a range of MIR tasks. Experimental results show MaPP as successful in addressing the cover song task on a set of Mazurka scores, with a mean precision of 0.965 and recall of 0.776. SuPP and MaPP also show promise in other MIR applications, such as novel-segment detection and genre classification, the latter of which demonstrates their suitability as inputs for machine learning problems.","PeriodicalId":309903,"journal":{"name":"International Society for Music Information Retrieval Conference","volume":"8 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2020-10-11","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"1","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"International Society for Music Information Retrieval Conference","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.5281/ZENODO.4245438","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 1

Abstract

Accurate and flexible representations of music data are paramount to addressing MIR tasks, yet many of the existing approaches are difficult to interpret or rigid in nature. This work introduces two new song representations for structure-based retrieval methods: Surface Pattern Preservation (SuPP), a continuous song representation, and Matrix Pattern Preservation (MaPP), SuPP’s discrete counterpart. These representations come equipped with several user-defined parameters so that they are adaptable for a range of MIR tasks. Experimental results show MaPP as successful in addressing the cover song task on a set of Mazurka scores, with a mean precision of 0.965 and recall of 0.776. SuPP and MaPP also show promise in other MIR applications, such as novel-segment detection and genre classification, the latter of which demonstrates their suitability as inputs for machine learning problems.
SuPP & MaPP: MIR任务的自适应结构表示
音乐数据的准确和灵活的表示对于解决MIR任务至关重要,然而许多现有的方法难以解释或本质上是僵化的。这项工作为基于结构的检索方法引入了两种新的歌曲表示:表面模式保存(SuPP),一种连续的歌曲表示,和矩阵模式保存(MaPP), SuPP的离散对应。这些表示配备了几个用户定义的参数,以便它们适用于一系列MIR任务。实验结果表明,MaPP在一组马祖卡乐谱上成功地解决了翻唱歌曲任务,平均精度为0.965,召回率为0.776。SuPP和MaPP在其他MIR应用中也显示出前景,例如小说片段检测和类型分类,后者证明了它们作为机器学习问题输入的适用性。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 求助全文
来源期刊
自引率
0.00%
发文量
0
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:604180095
Book学术官方微信