Online feature selection for Brain Computer Interfaces

G. Oliver, P. Sunehag, Tom Gedeon
{"title":"Online feature selection for Brain Computer Interfaces","authors":"G. Oliver, P. Sunehag, Tom Gedeon","doi":"10.1109/CCMB.2013.6609175","DOIUrl":null,"url":null,"abstract":"Online adaptation of Brain Computer Interfaces allows for arduous training periods to be circumvented. To do this we must adapt a classifier to a new session, or better yet, a new subject. We initially outline a procedure to perform online adaptation of both the classifier's weights and the feature selection and confirm its use in session to session transfer. We found that retraining both feature selection and the classifier resulted in an average improvement of 5% over simply retraining the classifier, and as high as 10%. To avoid a retraining phase the online adaptation must be performed without labeled data. We propose and compare several methods to adapt the feature selection on unlabeled data, making use of both semi-supervised learning and interactive error potentials. From this we determined that performing a weighted feature selection performed the best, and the proposed novel approach of combining semi-supervised learning and interactive error potentials outperformed performing each individually. To improve the subject to subject adaptation when a database of previous subjects is available, we investigated using Weighted Majority Voting to weight the classifier towards subjects in that database that are useful for the new subject. We found this approach to outperform pooling all data.","PeriodicalId":395025,"journal":{"name":"2013 IEEE Symposium on Computational Intelligence, Cognitive Algorithms, Mind, and Brain (CCMB)","volume":"7 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2013-04-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"2","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"2013 IEEE Symposium on Computational Intelligence, Cognitive Algorithms, Mind, and Brain (CCMB)","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1109/CCMB.2013.6609175","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 2

Abstract

Online adaptation of Brain Computer Interfaces allows for arduous training periods to be circumvented. To do this we must adapt a classifier to a new session, or better yet, a new subject. We initially outline a procedure to perform online adaptation of both the classifier's weights and the feature selection and confirm its use in session to session transfer. We found that retraining both feature selection and the classifier resulted in an average improvement of 5% over simply retraining the classifier, and as high as 10%. To avoid a retraining phase the online adaptation must be performed without labeled data. We propose and compare several methods to adapt the feature selection on unlabeled data, making use of both semi-supervised learning and interactive error potentials. From this we determined that performing a weighted feature selection performed the best, and the proposed novel approach of combining semi-supervised learning and interactive error potentials outperformed performing each individually. To improve the subject to subject adaptation when a database of previous subjects is available, we investigated using Weighted Majority Voting to weight the classifier towards subjects in that database that are useful for the new subject. We found this approach to outperform pooling all data.
脑机接口的在线特征选择
脑机接口的在线适应允许艰苦的训练周期被规避。要做到这一点,我们必须使分类器适应新的会话,或者更好的是适应新的主题。我们首先概述了一个过程来执行在线适应分类器的权重和特征选择,并确认其在会话到会话传输中的使用。我们发现,与简单地对分类器进行再训练相比,对特征选择和分类器进行再训练的结果平均提高了5%,最高可达10%。为了避免再训练阶段,在线适应必须在没有标记数据的情况下进行。我们提出并比较了几种方法,利用半监督学习和交互误差潜力来适应未标记数据的特征选择。由此,我们确定执行加权特征选择的效果最好,并且提出的结合半监督学习和交互误差潜力的新方法优于单独执行每种方法。当有一个以前的主题数据库可用时,为了提高主题对主题的适应性,我们研究了使用加权多数投票来对数据库中对新主题有用的主题对分类器进行加权。我们发现这种方法优于将所有数据合并在一起。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 求助全文
来源期刊
自引率
0.00%
发文量
0
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信