A maximum likelihood parameter estimation method for nonlinear dynamical systems

B. David, G. Bastin
{"title":"A maximum likelihood parameter estimation method for nonlinear dynamical systems","authors":"B. David, G. Bastin","doi":"10.1109/CDC.1999.832852","DOIUrl":null,"url":null,"abstract":"Presents an original method for maximum likelihood parameter estimation in nonlinear dynamical systems with highly correlated residuals. The method relies on an autoregressive representation of the residuals to build an estimate of the inverse of its covariance matrix. Theoretical concepts are developed and we provide a successful application of the method on a two-parameters estimation problem with data collected on a real plant. This experimental study shows that the statistical properties of the estimated parameters are significantly improved with our method in comparison to classical estimation techniques that usually rely on an uncorrelated representation of the residuals. In addition, a far better estimation of the confidence region around the parameter vector is obtained.","PeriodicalId":137513,"journal":{"name":"Proceedings of the 38th IEEE Conference on Decision and Control (Cat. No.99CH36304)","volume":"61 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"1999-12-07","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"10","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Proceedings of the 38th IEEE Conference on Decision and Control (Cat. No.99CH36304)","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1109/CDC.1999.832852","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 10

Abstract

Presents an original method for maximum likelihood parameter estimation in nonlinear dynamical systems with highly correlated residuals. The method relies on an autoregressive representation of the residuals to build an estimate of the inverse of its covariance matrix. Theoretical concepts are developed and we provide a successful application of the method on a two-parameters estimation problem with data collected on a real plant. This experimental study shows that the statistical properties of the estimated parameters are significantly improved with our method in comparison to classical estimation techniques that usually rely on an uncorrelated representation of the residuals. In addition, a far better estimation of the confidence region around the parameter vector is obtained.
非线性动力系统的极大似然参数估计方法
提出了一种具有高度相关残差的非线性动力系统的最大似然参数估计方法。该方法依靠残差的自回归表示来建立其协方差矩阵逆的估计。理论概念的发展,我们提供了一个成功的应用该方法的双参数估计问题与实际工厂收集的数据。该实验研究表明,与通常依赖残差不相关表示的经典估计技术相比,我们的方法显著改善了估计参数的统计特性。此外,对参数向量周围的置信区域进行了较好的估计。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 求助全文
来源期刊
自引率
0.00%
发文量
0
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信