Using a Genetic Algorithm to Explore A*-like Pathfinding Algorithms

Ryan E. Leigh, S. Louis, C. Miles
{"title":"Using a Genetic Algorithm to Explore A*-like Pathfinding Algorithms","authors":"Ryan E. Leigh, S. Louis, C. Miles","doi":"10.1109/CIG.2007.368081","DOIUrl":null,"url":null,"abstract":"We use a genetic algorithm to explore the space of pathfinding algorithms in Lagoon, a 3D naval real-time strategy game and training simulation. To aid in training, Lagoon tries to provide a rich environment with many agents (boats) that maneuver realistically. A*, the traditional pathfinding algorithm in games is computationally expensive when run for many agents and A* paths quickly lose validity as agents move. Although there is a large literature targeted at making A* implementations faster, we want believability and optimal paths may not be believable. In this paper we use a genetic algorithm to search the space of network search algorithms like A* to find new pathfinding algorithms that are near-optimal, fast, and believable. Our results indicate that the genetic algorithm can explore this space well and that novel pathfinding algorithms (found by our genetic algorithm) quickly find near-optimal, more-believable paths in Lagoon","PeriodicalId":365269,"journal":{"name":"2007 IEEE Symposium on Computational Intelligence and Games","volume":"135 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2007-04-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"41","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"2007 IEEE Symposium on Computational Intelligence and Games","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1109/CIG.2007.368081","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 41

Abstract

We use a genetic algorithm to explore the space of pathfinding algorithms in Lagoon, a 3D naval real-time strategy game and training simulation. To aid in training, Lagoon tries to provide a rich environment with many agents (boats) that maneuver realistically. A*, the traditional pathfinding algorithm in games is computationally expensive when run for many agents and A* paths quickly lose validity as agents move. Although there is a large literature targeted at making A* implementations faster, we want believability and optimal paths may not be believable. In this paper we use a genetic algorithm to search the space of network search algorithms like A* to find new pathfinding algorithms that are near-optimal, fast, and believable. Our results indicate that the genetic algorithm can explore this space well and that novel pathfinding algorithms (found by our genetic algorithm) quickly find near-optimal, more-believable paths in Lagoon
用遗传算法探索类a *寻路算法
我们使用遗传算法来探索寻路算法的空间,泻湖,一个三维海军实时战略游戏和训练模拟。为了帮助训练,Lagoon试图提供一个丰富的环境,其中有许多真实机动的代理(船)。A*,游戏中的传统寻径算法在运行许多代理时计算成本很高,并且随着代理的移动,A*路径很快失去有效性。尽管有大量的文献以使a *实现更快为目标,但我们想要的是可信度,而最优路径可能不可信。在本文中,我们使用遗传算法来搜索网络搜索算法(如a *)的空间,以寻找接近最优、快速和可信的新寻路算法。我们的研究结果表明,遗传算法可以很好地探索这个空间,并且新的寻径算法(由我们的遗传算法发现)可以快速找到泻湖中接近最优的,更可信的路径
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 求助全文
来源期刊
自引率
0.00%
发文量
0
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信