Fractional Maps and Fractional Attractors. Part I: $\alpha$-Families of Maps

M. Edelman
{"title":"Fractional Maps and Fractional Attractors. Part I: $\\alpha$-Families of Maps","authors":"M. Edelman","doi":"10.5890/DNC.2012.07.003","DOIUrl":null,"url":null,"abstract":"In this paper we present a uniform way to derive families of maps from the corresponding differential equations describing systems which experience periodic kicks. The families depend on a single parameter - the order of a differential equation $\\alpha > 0$. We investigate general properties of such families and how they vary with the increase in $\\alpha$ which represents increase in the space dimension and the memory of a system (increase in the weights of the earlier states). To demonstrate general properties of the $\\alpha$-families we use examples from physics (Standard $\\alpha$-family of maps) and population biology (Logistic $\\alpha$-family of maps). We show that with the increase in $\\alpha$ systems demonstrate more complex and chaotic behavior.","PeriodicalId":166772,"journal":{"name":"arXiv: Chaotic Dynamics","volume":"65 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2012-09-25","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"26","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"arXiv: Chaotic Dynamics","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.5890/DNC.2012.07.003","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 26

Abstract

In this paper we present a uniform way to derive families of maps from the corresponding differential equations describing systems which experience periodic kicks. The families depend on a single parameter - the order of a differential equation $\alpha > 0$. We investigate general properties of such families and how they vary with the increase in $\alpha$ which represents increase in the space dimension and the memory of a system (increase in the weights of the earlier states). To demonstrate general properties of the $\alpha$-families we use examples from physics (Standard $\alpha$-family of maps) and population biology (Logistic $\alpha$-family of maps). We show that with the increase in $\alpha$ systems demonstrate more complex and chaotic behavior.
分数映射和分数吸引子。第一部分:$\alpha$-地图族
本文给出了一种统一的方法,从描述周期性踢动系统的相应微分方程中导出映射族。族依赖于一个参数-微分方程的阶$\ α > 0$。我们研究了这些族的一般性质,以及它们如何随着$\alpha$的增加而变化,$\alpha$表示空间维度和系统内存的增加(早期状态权重的增加)。为了演示$\alpha$-族的一般性质,我们使用了物理学(标准$\alpha$-族地图)和种群生物学(逻辑$\alpha$-族地图)中的例子。我们表明,随着$\alpha$的增加,系统表现出更复杂和混沌的行为。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 求助全文
来源期刊
自引率
0.00%
发文量
0
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:604180095
Book学术官方微信