{"title":"Noise-Enhanced Community Detection","authors":"Reyhaneh Abdolazimi, Shengmin Jin, R. Zafarani","doi":"10.1145/3372923.3404788","DOIUrl":null,"url":null,"abstract":"Community structure plays a significant role in uncovering the structure of a network. While many community detection algorithms have been introduced, improving the quality of detected communities is still an open problem. In many areas of science, adding noise improves system performance and algorithm efficiency, motivating us to also explore the possibility of adding noise to improve community detection algorithms. We propose a noise-enhanced community detection framework that improves communities detected by existing community detection methods. The framework introduces three noise methods to help detect communities better. Theoretical justification and extensive experiments on synthetic and real-world datasets show that our framework helps community detection methods find better communities.","PeriodicalId":389616,"journal":{"name":"Proceedings of the 31st ACM Conference on Hypertext and Social Media","volume":"53 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2020-07-13","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"3","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Proceedings of the 31st ACM Conference on Hypertext and Social Media","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1145/3372923.3404788","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 3
Abstract
Community structure plays a significant role in uncovering the structure of a network. While many community detection algorithms have been introduced, improving the quality of detected communities is still an open problem. In many areas of science, adding noise improves system performance and algorithm efficiency, motivating us to also explore the possibility of adding noise to improve community detection algorithms. We propose a noise-enhanced community detection framework that improves communities detected by existing community detection methods. The framework introduces three noise methods to help detect communities better. Theoretical justification and extensive experiments on synthetic and real-world datasets show that our framework helps community detection methods find better communities.