Modern technologies of deep learning for forecasting time series

А.И. Сотников
{"title":"Modern technologies of deep learning for forecasting time series","authors":"А.И. Сотников","doi":"10.21499/2409-1650-29-3-95-105","DOIUrl":null,"url":null,"abstract":"Прогнозирование временных рядов стало очень интенсивной областью исследований, число которых в последние годы даже увеличивается. Глубокие нейронные сети доказали свою эффективность и достигают высокой точности во многих областях применения. По этим причинам в настоящее время они являются одним из наиболее широко используемых методов машинного обучения для решения проблем, связанных с большими данными.\n Time series forecasting has become a very intensive area of research, the number of which has even increased in recent years. Deep neural networks have been proven to be effective and achieve high accuracy in many applications. For these reasons, they are currently one of the most widely used machine learning methods for solving big data problems.","PeriodicalId":424160,"journal":{"name":"Informacionno-technologicheskij vestnik","volume":"44 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2021-09-17","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Informacionno-technologicheskij vestnik","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.21499/2409-1650-29-3-95-105","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 0

Abstract

Прогнозирование временных рядов стало очень интенсивной областью исследований, число которых в последние годы даже увеличивается. Глубокие нейронные сети доказали свою эффективность и достигают высокой точности во многих областях применения. По этим причинам в настоящее время они являются одним из наиболее широко используемых методов машинного обучения для решения проблем, связанных с большими данными. Time series forecasting has become a very intensive area of research, the number of which has even increased in recent years. Deep neural networks have been proven to be effective and achieve high accuracy in many applications. For these reasons, they are currently one of the most widely used machine learning methods for solving big data problems.
预测时间序列的现代深度学习技术
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 求助全文
来源期刊
自引率
0.00%
发文量
0
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信