{"title":"Attributed Graph Clustering: an Attribute-aware Graph Embedding Approach","authors":"Esra Akbas, Peixiang Zhao","doi":"10.1145/3110025.3110092","DOIUrl":null,"url":null,"abstract":"Graph clustering is a fundamental problem in social network analysis, the goal of which is to group vertices of a graph into a series of densely knitted clusters with each cluster well separated from all the others. Classical graph clustering methods take advantage of the graph topology to model and quantify vertex proximity. With the proliferation of rich graph contents, such as user profiles in social networks, and gene annotations in protein interaction networks, it is essential to consider both the structure and content information of graphs for high-quality graph clustering. In this paper, we propose a graph embedding approach to clustering content-enriched graphs. The key idea is to embed each vertex of a graph into a continuous vector space where the localized structural and attributive information of vertices can be encoded in a unified, latent representation. Specifically, we quantify vertex-wise attribute proximity into edge weights, and employ truncated, attribute-aware random walks to learn the latent representations for vertices. We evaluate our attribute-aware graph embedding method in real-world attributed graphs, and the results demonstrate its effectiveness in comparison with state-of-the-art algorithms.","PeriodicalId":399660,"journal":{"name":"Proceedings of the 2017 IEEE/ACM International Conference on Advances in Social Networks Analysis and Mining 2017","volume":"43 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2017-07-31","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"23","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Proceedings of the 2017 IEEE/ACM International Conference on Advances in Social Networks Analysis and Mining 2017","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1145/3110025.3110092","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 23
Abstract
Graph clustering is a fundamental problem in social network analysis, the goal of which is to group vertices of a graph into a series of densely knitted clusters with each cluster well separated from all the others. Classical graph clustering methods take advantage of the graph topology to model and quantify vertex proximity. With the proliferation of rich graph contents, such as user profiles in social networks, and gene annotations in protein interaction networks, it is essential to consider both the structure and content information of graphs for high-quality graph clustering. In this paper, we propose a graph embedding approach to clustering content-enriched graphs. The key idea is to embed each vertex of a graph into a continuous vector space where the localized structural and attributive information of vertices can be encoded in a unified, latent representation. Specifically, we quantify vertex-wise attribute proximity into edge weights, and employ truncated, attribute-aware random walks to learn the latent representations for vertices. We evaluate our attribute-aware graph embedding method in real-world attributed graphs, and the results demonstrate its effectiveness in comparison with state-of-the-art algorithms.