Similar Trademark Image Retrieval Based on Convolutional Neural Network and Constraint Theory

Tian Lan, Xiaoyi Feng, Lei Li, Zhaoqiang Xia
{"title":"Similar Trademark Image Retrieval Based on Convolutional Neural Network and Constraint Theory","authors":"Tian Lan, Xiaoyi Feng, Lei Li, Zhaoqiang Xia","doi":"10.1109/IPTA.2018.8608162","DOIUrl":null,"url":null,"abstract":"Trademarks are intellectual and industrial properties developed under the commodity economy, representing reputation, quality and reliability of firms. Therefore, in order to prevent the registration of new trademarks from having a high-degree similarity with registered ones, we propose a new trademark retrieval method. Based on the fact that the shape and color of a trademark are varied, our proposed method combines a metric convolutional neural network (CNN) and conventional hand-crafted features to describe the trademark images. More specifically, we first train the CNN based on Siamese and Triplet structures, and then extract the hand-crafted features from convolutional feature maps. For this research, we utilize a challenging trademark dataset that contains 7139 various color or gray images. Besides, extensive experiments on our dataset and the METU public dataset demonstrate the effectiveness of our method in trademark retrieval and achieve the state-of-the-art performance compared to traditional countermeasures.","PeriodicalId":272294,"journal":{"name":"2018 Eighth International Conference on Image Processing Theory, Tools and Applications (IPTA)","volume":"19 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2018-11-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"6","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"2018 Eighth International Conference on Image Processing Theory, Tools and Applications (IPTA)","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1109/IPTA.2018.8608162","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 6

Abstract

Trademarks are intellectual and industrial properties developed under the commodity economy, representing reputation, quality and reliability of firms. Therefore, in order to prevent the registration of new trademarks from having a high-degree similarity with registered ones, we propose a new trademark retrieval method. Based on the fact that the shape and color of a trademark are varied, our proposed method combines a metric convolutional neural network (CNN) and conventional hand-crafted features to describe the trademark images. More specifically, we first train the CNN based on Siamese and Triplet structures, and then extract the hand-crafted features from convolutional feature maps. For this research, we utilize a challenging trademark dataset that contains 7139 various color or gray images. Besides, extensive experiments on our dataset and the METU public dataset demonstrate the effectiveness of our method in trademark retrieval and achieve the state-of-the-art performance compared to traditional countermeasures.
基于卷积神经网络和约束理论的相似商标图像检索
商标是在商品经济下发展起来的知识产权和工业产权,代表着企业的信誉、质量和可靠性。因此,为了防止新注册商标与已注册商标高度相似,我们提出了一种新的商标检索方法。基于商标形状和颜色的多样性,我们提出了一种结合度量卷积神经网络(CNN)和传统手工特征来描述商标图像的方法。更具体地说,我们首先基于Siamese和Triplet结构训练CNN,然后从卷积特征映射中提取手工制作的特征。在这项研究中,我们使用了一个具有挑战性的商标数据集,该数据集包含7139个各种颜色或灰色图像。此外,在我们的数据集和METU公共数据集上进行的大量实验表明,我们的方法在商标检索中是有效的,与传统的对策相比,达到了最先进的性能。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 求助全文
来源期刊
自引率
0.00%
发文量
0
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信