Low-power wireless system for temperature and humidity monitoring in artificial ventilation

A. Bodini, M. Serpelloni, E. Sardini, N. Latronico, M. Tommasi, Matteo Filippini
{"title":"Low-power wireless system for temperature and humidity monitoring in artificial ventilation","authors":"A. Bodini, M. Serpelloni, E. Sardini, N. Latronico, M. Tommasi, Matteo Filippini","doi":"10.1109/MEMEA.2016.7533801","DOIUrl":null,"url":null,"abstract":"Artificial ventilators are commonly used with Passive Heat-Moisture Exchangers (HME) to warm and humidify the inspired air in order to ensure a proper conditioning of inspired gases to the artificially ventilated patients. However, different aspects potentially affect their performances and this change in performance should be analyzed in-vivo during HME operation. In this paper, a wireless measurement system is proposed for the monitoring of air temperature and humidity in-vivo. The system is composed by a measuring device connected to the ventilating tube near the HME and a reading device connected to a Personal Computer (PC). Each device integrates a wireless transmission via low-power Bluetooth module that allows limiting power consumption. For the measuring device, the calculated power consumption when all the on-board components are working is about 15 mA, permitting a continuous monitoring for about 5 days and 16 hours with a rechargeable Li-Ion battery of 2050 mAh. A first prototype was manufactured and tested in the laboratory. Then, this prototype was tested with a setup specially developed to simulate human breath. The tests were conduced changing the respiratory rate and minute volume. Preliminary results are reported showing interesting aspects, such as the warm-up time of the HME. Furthermore, the results shows a direct dependence of humidity loss on frequency-volume ratio requiring future investigations. Clinicians are expected to use this system in-vivo to identify the correlations between clinical issues and HME performances.","PeriodicalId":221120,"journal":{"name":"2016 IEEE International Symposium on Medical Measurements and Applications (MeMeA)","volume":"8 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2016-05-15","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"3","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"2016 IEEE International Symposium on Medical Measurements and Applications (MeMeA)","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1109/MEMEA.2016.7533801","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 3

Abstract

Artificial ventilators are commonly used with Passive Heat-Moisture Exchangers (HME) to warm and humidify the inspired air in order to ensure a proper conditioning of inspired gases to the artificially ventilated patients. However, different aspects potentially affect their performances and this change in performance should be analyzed in-vivo during HME operation. In this paper, a wireless measurement system is proposed for the monitoring of air temperature and humidity in-vivo. The system is composed by a measuring device connected to the ventilating tube near the HME and a reading device connected to a Personal Computer (PC). Each device integrates a wireless transmission via low-power Bluetooth module that allows limiting power consumption. For the measuring device, the calculated power consumption when all the on-board components are working is about 15 mA, permitting a continuous monitoring for about 5 days and 16 hours with a rechargeable Li-Ion battery of 2050 mAh. A first prototype was manufactured and tested in the laboratory. Then, this prototype was tested with a setup specially developed to simulate human breath. The tests were conduced changing the respiratory rate and minute volume. Preliminary results are reported showing interesting aspects, such as the warm-up time of the HME. Furthermore, the results shows a direct dependence of humidity loss on frequency-volume ratio requiring future investigations. Clinicians are expected to use this system in-vivo to identify the correlations between clinical issues and HME performances.
用于人工通风中温湿度监测的低功耗无线系统
人工呼吸机通常与被动式热湿交换器(HME)一起使用,以加热和加湿吸入空气,以确保人工通气患者的吸入气体得到适当的调节。然而,不同的方面可能会影响它们的性能,这种性能变化应该在HME手术期间进行体内分析。本文提出了一种用于体内空气温度和湿度监测的无线测量系统。该系统由连接到HME附近通风管的测量装置和连接到个人计算机(PC)的读取装置组成。每个设备通过低功耗蓝牙模块集成了无线传输,从而限制了功耗。对于测量设备,当所有机载组件工作时,计算出的功耗约为15毫安,允许使用2050毫安的可充电锂离子电池连续监测约5天16小时。第一个原型被制造出来并在实验室进行了测试。然后,这个原型用一种专门模拟人类呼吸的装置进行了测试。试验是通过改变呼吸频率和分气量来进行的。报告的初步结果显示了有趣的方面,如HME的预热时间。此外,结果表明湿度损失直接依赖于频率-体积比,需要进一步的研究。临床医生有望在体内使用该系统来确定临床问题与HME表现之间的相关性。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 求助全文
来源期刊
自引率
0.00%
发文量
0
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信