A Computational technique for solving Singularly Perturbed Boundary Value Problems

Ravi Kanth Asv
{"title":"A Computational technique for solving Singularly Perturbed Boundary Value Problems","authors":"Ravi Kanth Asv","doi":"10.0000/IJAMC.2013.5.1.410","DOIUrl":null,"url":null,"abstract":"This paper presents a computational technique for solving singularly perturbed boundary value problems with the boundary layer at one end. This technique is a non-iterative on small deviating argument which converts the original second order boundary value problem to the first order differential equation with the deviating argument. We use the trapezoidal method on the first order differential equation; tridiagonal scheme is obtained and is solved efficiently. Numerical examples show the validity of the present method.","PeriodicalId":173223,"journal":{"name":"International Journal of Applied Mathematics and Computation","volume":"214 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2013-08-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"2","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"International Journal of Applied Mathematics and Computation","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.0000/IJAMC.2013.5.1.410","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 2

Abstract

This paper presents a computational technique for solving singularly perturbed boundary value problems with the boundary layer at one end. This technique is a non-iterative on small deviating argument which converts the original second order boundary value problem to the first order differential equation with the deviating argument. We use the trapezoidal method on the first order differential equation; tridiagonal scheme is obtained and is solved efficiently. Numerical examples show the validity of the present method.
求解奇异摄动边值问题的一种计算技术
本文提出了一种求解一端有边界层的奇异摄动边值问题的计算方法。该方法是一种小偏离参数的非迭代方法,它将原二阶边值问题转化为带偏离参数的一阶微分方程。我们用梯形法求解一阶微分方程;得到了三对角格式,并进行了有效的求解。数值算例表明了该方法的有效性。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 求助全文
来源期刊
自引率
0.00%
发文量
0
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:604180095
Book学术官方微信