Enriching Attributes from Knowledge Graph for Fine-grained Text-to-Image Synthesis

Yonghua Zhu, Ning Ge, Jieyu Huang, Yunwen Zhu, Binghui Zheng, Wenjun Zhang
{"title":"Enriching Attributes from Knowledge Graph for Fine-grained Text-to-Image Synthesis","authors":"Yonghua Zhu, Ning Ge, Jieyu Huang, Yunwen Zhu, Binghui Zheng, Wenjun Zhang","doi":"10.1145/3487075.3487155","DOIUrl":null,"url":null,"abstract":"In this paper, we propose an Attribute-Rich Generative Adversarial Network (AttRiGAN) for text-to-image synthesis, which enriches the simple text description by associating knowledge graph and embedding it in the synthesis task in the form of an attribute matrix. Higher fine-grained images can be synthesized with AttRiGAN, and the synthesized sample are more similar to the objects that exist in the real world, since they are driven by attributes which are enriched from the knowledge graph. The experiments conducted on two widely-used fine-grained image datasets show that our AttRiGAN allows a significant improvement in fine-grained text-to-image synthesis.","PeriodicalId":354966,"journal":{"name":"Proceedings of the 5th International Conference on Computer Science and Application Engineering","volume":"7 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2021-10-19","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Proceedings of the 5th International Conference on Computer Science and Application Engineering","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1145/3487075.3487155","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 0

Abstract

In this paper, we propose an Attribute-Rich Generative Adversarial Network (AttRiGAN) for text-to-image synthesis, which enriches the simple text description by associating knowledge graph and embedding it in the synthesis task in the form of an attribute matrix. Higher fine-grained images can be synthesized with AttRiGAN, and the synthesized sample are more similar to the objects that exist in the real world, since they are driven by attributes which are enriched from the knowledge graph. The experiments conducted on two widely-used fine-grained image datasets show that our AttRiGAN allows a significant improvement in fine-grained text-to-image synthesis.
基于细粒度文本到图像合成的知识图属性丰富
本文提出了一种用于文本到图像合成的富属性生成对抗网络(attribute - rich Generative Adversarial Network, AttRiGAN),通过关联知识图并以属性矩阵的形式嵌入到合成任务中来丰富简单的文本描述。AttRiGAN可以合成更细粒度的图像,并且合成的样本更接近现实世界中存在的对象,因为它们是由知识图中丰富的属性驱动的。在两个广泛使用的细粒度图像数据集上进行的实验表明,我们的AttRiGAN可以显着改善细粒度文本到图像的合成。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 求助全文
来源期刊
自引率
0.00%
发文量
0
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:604180095
Book学术官方微信