Evolutionary Gibbs sampler for image segmentation

Xiao Wang, Han Wang
{"title":"Evolutionary Gibbs sampler for image segmentation","authors":"Xiao Wang, Han Wang","doi":"10.1109/ICIP.2004.1421864","DOIUrl":null,"url":null,"abstract":"We propose a novel evolutionary algorithm for the function optimization problem in Bayesian image segmentation with Markov random field prior. Function variables are partitioned into several codings. A pivot coding is selected and variables in it are evolved respectively according to their probability distributions which encode both the evolutionary pressure and contextual constraints from neighboring pixels. Variables in other codings are evolved according to their conditional probabilities. In summary, the algorithm is about building probabilistic models to guide search. It achieves the efficiency and flexibility by incorporating Gibbs sampler in an evolutionary approach. Remarkable performance is observed in some experiments.","PeriodicalId":184798,"journal":{"name":"2004 International Conference on Image Processing, 2004. ICIP '04.","volume":"100 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2004-10-24","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"3","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"2004 International Conference on Image Processing, 2004. ICIP '04.","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1109/ICIP.2004.1421864","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 3

Abstract

We propose a novel evolutionary algorithm for the function optimization problem in Bayesian image segmentation with Markov random field prior. Function variables are partitioned into several codings. A pivot coding is selected and variables in it are evolved respectively according to their probability distributions which encode both the evolutionary pressure and contextual constraints from neighboring pixels. Variables in other codings are evolved according to their conditional probabilities. In summary, the algorithm is about building probabilistic models to guide search. It achieves the efficiency and flexibility by incorporating Gibbs sampler in an evolutionary approach. Remarkable performance is observed in some experiments.
用于图像分割的进化Gibbs采样器
针对具有马尔可夫随机场先验的贝叶斯图像分割中的函数优化问题,提出了一种新的进化算法。函数变量被划分为几个编码。选择一个支点编码,并根据其概率分布分别进化其中的变量,该概率分布编码了来自相邻像素的进化压力和上下文约束。其他编码中的变量是根据它们的条件概率进化的。总之,该算法是关于建立概率模型来指导搜索。它通过将吉布斯采样器以一种进化的方式结合来实现效率和灵活性。在一些实验中观察到显著的性能。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 求助全文
来源期刊
自引率
0.00%
发文量
0
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:604180095
Book学术官方微信