Machine Learning for Self-Calibration Parameters of Data-Driven Models: Case Study of an Integrated Maintenance Digital Platform

J. Szpytko, Yorlandys Salgado Duarte, Lázaro Ramón Millares Barthelemy
{"title":"Machine Learning for Self-Calibration Parameters of Data-Driven Models: Case Study of an Integrated Maintenance Digital Platform","authors":"J. Szpytko, Yorlandys Salgado Duarte, Lázaro Ramón Millares Barthelemy","doi":"10.1109/MMAR55195.2022.9874272","DOIUrl":null,"url":null,"abstract":"A well-established problem always in the process of methodological improvement is the coordination of generator maintenance scheduling in Power Systems. Usually, the sources of changes and improvements are the wide range of conditions and singularities of Power Systems, such as structure, needs, technologies, resources, information, etc. The risk-oriented approach is one of the most accepted criteria to address this well-defined problem. However, there are hidden challenges of data-calibration-modeling and technology-integration when applying this approach. One of the most controversial is the calibration of model parameters and variables in the evaluated scenario, as they depend on historical data. In this paper, to address this controversial hidden challenge, we propose to use machine learning for on-line calibration by introducing smart layers based on comprehensive human diagrams that filter and analyze historical data collected through monitoring systems and make all variables and parameters of the risk model ready for use. In particular, we focus the attention on one of the model components, the load modeling. This proposed organic connection ensures a feasible and practical solution to be used in a real system because it addresses a potential challenge in technology integration.","PeriodicalId":169528,"journal":{"name":"2022 26th International Conference on Methods and Models in Automation and Robotics (MMAR)","volume":"126 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2022-08-22","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"2022 26th International Conference on Methods and Models in Automation and Robotics (MMAR)","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1109/MMAR55195.2022.9874272","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 0

Abstract

A well-established problem always in the process of methodological improvement is the coordination of generator maintenance scheduling in Power Systems. Usually, the sources of changes and improvements are the wide range of conditions and singularities of Power Systems, such as structure, needs, technologies, resources, information, etc. The risk-oriented approach is one of the most accepted criteria to address this well-defined problem. However, there are hidden challenges of data-calibration-modeling and technology-integration when applying this approach. One of the most controversial is the calibration of model parameters and variables in the evaluated scenario, as they depend on historical data. In this paper, to address this controversial hidden challenge, we propose to use machine learning for on-line calibration by introducing smart layers based on comprehensive human diagrams that filter and analyze historical data collected through monitoring systems and make all variables and parameters of the risk model ready for use. In particular, we focus the attention on one of the model components, the load modeling. This proposed organic connection ensures a feasible and practical solution to be used in a real system because it addresses a potential challenge in technology integration.
数据驱动模型参数自校准的机器学习:一个集成维护数字平台的案例研究
在方法改进的过程中,电力系统中发电机检修计划的协调一直是一个公认的问题。通常,电力系统的变化和改进的来源是结构、需求、技术、资源、信息等广泛的条件和奇异性。面向风险的方法是解决这个定义良好的问题的最被接受的标准之一。然而,在应用这种方法时,存在数据校准建模和技术集成方面的隐藏挑战。其中最具争议的是评估情景中模型参数和变量的校准,因为它们依赖于历史数据。在本文中,为了解决这一有争议的隐藏挑战,我们建议使用机器学习进行在线校准,方法是引入基于综合人类图表的智能层,过滤和分析通过监测系统收集的历史数据,并使风险模型的所有变量和参数准备好使用。特别地,我们将注意力集中在一个模型组件上,即负载建模。这种提议的有机连接确保了在实际系统中使用的可行和实用的解决方案,因为它解决了技术集成中的潜在挑战。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 求助全文
来源期刊
自引率
0.00%
发文量
0
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:604180095
Book学术官方微信