Data compression and prediction using machine learning for industrial IoT

Jun-Su Park, Hyunjae Park, Young-June Choi
{"title":"Data compression and prediction using machine learning for industrial IoT","authors":"Jun-Su Park, Hyunjae Park, Young-June Choi","doi":"10.1109/ICOIN.2018.8343232","DOIUrl":null,"url":null,"abstract":"Industrial IoT generates big data that is useful for getting insight from data analysis but storing all the data is a burden. To resolve it, we propose to compress the industrial data using neural network regression into a representative vector with lossy compression. For efficiency of the compression, we use the divide-and-conquer method such that the industrial data can be handled by the chunk size of data. Through our experiments, we verify that industrial data is represented by a function and predicted with high accuracy.","PeriodicalId":228799,"journal":{"name":"2018 International Conference on Information Networking (ICOIN)","volume":"27 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"1900-01-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"29","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"2018 International Conference on Information Networking (ICOIN)","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1109/ICOIN.2018.8343232","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 29

Abstract

Industrial IoT generates big data that is useful for getting insight from data analysis but storing all the data is a burden. To resolve it, we propose to compress the industrial data using neural network regression into a representative vector with lossy compression. For efficiency of the compression, we use the divide-and-conquer method such that the industrial data can be handled by the chunk size of data. Through our experiments, we verify that industrial data is represented by a function and predicted with high accuracy.
工业物联网中使用机器学习的数据压缩和预测
工业物联网产生的大数据有助于从数据分析中获得洞察力,但存储所有数据是一种负担。为了解决这个问题,我们提出使用神经网络回归将工业数据压缩成具有有损压缩的代表性向量。为了提高压缩效率,我们采用了分而治之的方法,使工业数据可以按数据块大小进行处理。通过实验,验证了用函数表示工业数据,预测精度高。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 求助全文
来源期刊
自引率
0.00%
发文量
0
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:604180095
Book学术官方微信