Speech De-identification with Deep Neural Networks

Ádám Fodor, László Kopácsi, Z. '. Milacski, András Lőrincz
{"title":"Speech De-identification with Deep Neural Networks","authors":"Ádám Fodor, László Kopácsi, Z. '. Milacski, András Lőrincz","doi":"10.14232/actacyb.288282","DOIUrl":null,"url":null,"abstract":"Cloud-based speech services are powerful practical tools but the privacy of the speakers raises important legal concerns when exposed to the Internet. We propose a deep neural network solution that removes personal characteristics from human speech by converting it to the voice of a Text-to-Speech (TTS) system before sending the utterance to the cloud. The network learns to transcode sequences of vocoder parameters, delta and delta-delta features of human speech to those of the TTS engine. We evaluated several TTS systems, vocoders and audio alignment techniques. We measured the performance of our method by (i) comparing the result of speech recognition on the de-identified utterances with the original texts, (ii) computing the Mel-Cepstral Distortion of the aligned TTS and the transcoded sequences, and (iii) questioning human participants in A-not-B, 2AFC and 6AFC tasks. Our approach achieves the level required by diverse applications.","PeriodicalId":187125,"journal":{"name":"Acta Cybern.","volume":"73 5 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2021-12-07","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Acta Cybern.","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.14232/actacyb.288282","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 0

Abstract

Cloud-based speech services are powerful practical tools but the privacy of the speakers raises important legal concerns when exposed to the Internet. We propose a deep neural network solution that removes personal characteristics from human speech by converting it to the voice of a Text-to-Speech (TTS) system before sending the utterance to the cloud. The network learns to transcode sequences of vocoder parameters, delta and delta-delta features of human speech to those of the TTS engine. We evaluated several TTS systems, vocoders and audio alignment techniques. We measured the performance of our method by (i) comparing the result of speech recognition on the de-identified utterances with the original texts, (ii) computing the Mel-Cepstral Distortion of the aligned TTS and the transcoded sequences, and (iii) questioning human participants in A-not-B, 2AFC and 6AFC tasks. Our approach achieves the level required by diverse applications.
基于深度神经网络的语音去识别
基于云的语音服务是强大的实用工具,但当暴露在互联网上时,说话者的隐私引发了重要的法律问题。我们提出了一种深度神经网络解决方案,通过在将话语发送到云之前将其转换为文本到语音(TTS)系统的声音来消除人类语音中的个人特征。该网络学习将声码器参数序列、人类语音的delta和delta-delta特征转换为TTS引擎的特征。我们评估了几种TTS系统、声码器和音频校准技术。我们通过(i)将去识别话语的语音识别结果与原始文本进行比较,(ii)计算对齐的TTS和转编码序列的mei -倒谱失真,以及(iii)在A-not-B, 2AFC和6AFC任务中询问人类参与者来衡量我们的方法的性能。我们的方法达到了各种应用程序所需的级别。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 求助全文
来源期刊
自引率
0.00%
发文量
0
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信