Features Integration of Differential Binomial

Olha Koval
{"title":"Features Integration of Differential Binomial","authors":"Olha Koval","doi":"10.15550/ASJ.2016.03.079","DOIUrl":null,"url":null,"abstract":"In other cases, the integral of the differential binomial (1), as proved by Chebyshev cannot be expressed through elementary functions (Chebyshev, 1947). In the first case the theorem after substitutions and small application of binomial Newton, the example reduces to integrating power function or fractional-rational function and no problems arise. After standard substitutions in the second and third cases and further transformations the presence of radicals of various degrees greatly complicates simplification element of integration, which causes a mistake in the process. Therefore, we can not only offer a methodological approach that avoids cumbersome transformations and in faster integration results in fractional rational function, but also give the proof for the general case. Consider the cases II and III.","PeriodicalId":403624,"journal":{"name":"The Advanced Science Journal","volume":"26 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2016-11-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"The Advanced Science Journal","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.15550/ASJ.2016.03.079","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 0

Abstract

In other cases, the integral of the differential binomial (1), as proved by Chebyshev cannot be expressed through elementary functions (Chebyshev, 1947). In the first case the theorem after substitutions and small application of binomial Newton, the example reduces to integrating power function or fractional-rational function and no problems arise. After standard substitutions in the second and third cases and further transformations the presence of radicals of various degrees greatly complicates simplification element of integration, which causes a mistake in the process. Therefore, we can not only offer a methodological approach that avoids cumbersome transformations and in faster integration results in fractional rational function, but also give the proof for the general case. Consider the cases II and III.
微分二项积分的特征
在其他情况下,切比雪夫证明的微分二项(1)的积分不能用初等函数表示(切比雪夫,1947)。在第一种情况下,替换后的定理和二项式牛顿的小应用,将例子简化为幂函数或分数有理函数的积分,没有问题。在第二种和第三种情况的标准替换和进一步的变换之后,不同程度的自由基的存在使积分的简化元素变得非常复杂,从而导致了过程中的错误。因此,我们不仅可以提供一种方法方法,以避免繁琐的变换和更快的积分结果在分数阶有理函数,而且还给出了一般情况下的证明。考虑情形二和情形三。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 求助全文
来源期刊
自引率
0.00%
发文量
0
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信