Enhanced Semantic Features via Attention for Real-Time Visual Tracking

M. Geng, Haiying Wang, Yingsen Zeng
{"title":"Enhanced Semantic Features via Attention for Real-Time Visual Tracking","authors":"M. Geng, Haiying Wang, Yingsen Zeng","doi":"10.1109/VCIP47243.2019.8965870","DOIUrl":null,"url":null,"abstract":"The key to balance the tracking accuracy and speed for object tracking algorithms is to learn powerful features via offline training in a lightweight tracking framework. With the development of attention mechanisms, it’s facile to apply attention to enhance the features without modifying the basic structure of the network. In this paper, a novel combination of different attention modules is implemented into a siamese-based tracker and boosts the tracking performance with little computational burden. In particular, by applying non-local self-attention and dual pooling channel attention, the extracted features tend to be more discriminative and adaptive due to the offline learning with tracking targets of different classes. Meanwhile, an Index-Difference-weight boosts the performance and reduces overfitting when full occlusion occurs. Our experimental results on OTB2013 and OTB2015 show that the tracker using the proposal to implement the attention modules can achieve state-of-the-art performance with a speed of 49 frames per second.","PeriodicalId":388109,"journal":{"name":"2019 IEEE Visual Communications and Image Processing (VCIP)","volume":"100 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2019-12-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"2019 IEEE Visual Communications and Image Processing (VCIP)","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1109/VCIP47243.2019.8965870","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 0

Abstract

The key to balance the tracking accuracy and speed for object tracking algorithms is to learn powerful features via offline training in a lightweight tracking framework. With the development of attention mechanisms, it’s facile to apply attention to enhance the features without modifying the basic structure of the network. In this paper, a novel combination of different attention modules is implemented into a siamese-based tracker and boosts the tracking performance with little computational burden. In particular, by applying non-local self-attention and dual pooling channel attention, the extracted features tend to be more discriminative and adaptive due to the offline learning with tracking targets of different classes. Meanwhile, an Index-Difference-weight boosts the performance and reduces overfitting when full occlusion occurs. Our experimental results on OTB2013 and OTB2015 show that the tracker using the proposal to implement the attention modules can achieve state-of-the-art performance with a speed of 49 frames per second.
通过注意力增强实时视觉跟踪的语义特征
在一个轻量级的跟踪框架中,通过离线训练学习强大的特征是目标跟踪算法平衡跟踪精度和速度的关键。随着注意机制的发展,在不改变网络基本结构的情况下,利用注意增强特征变得很容易。本文将不同的注意力模块组合到一个基于连体的跟踪器中,在计算量小的情况下提高了跟踪性能。特别地,通过应用非局部自注意和双池化通道注意,提取的特征由于对不同类别的跟踪目标进行离线学习而具有更强的判别性和适应性。同时,Index-Difference-weight提高了性能,减少了完全遮挡时的过拟合。我们在OTB2013和OTB2015上的实验结果表明,使用该方案实现注意力模块的跟踪器可以达到最先进的性能,速度为49帧/秒。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 求助全文
来源期刊
自引率
0.00%
发文量
0
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:604180095
Book学术官方微信