The error-correcting capabilities of low-complexity decoded H-LDPC code as irregular LDPC code

P. Rybin
{"title":"The error-correcting capabilities of low-complexity decoded H-LDPC code as irregular LDPC code","authors":"P. Rybin","doi":"10.1109/RED.2014.7016711","DOIUrl":null,"url":null,"abstract":"This paper deals with the Low-Density Parity-Check codes with the constituent Hamming codes (H-LDPC codes) and two different iterative hard-decision low-complexity decoding algorithms. Both algorithms are based on the same main idea: the decreasing of the syndrome weight on each step of the decoding algorithm. The first decoding algorithm uses the properties of the constituent Hamming code. The best known lower-bound on the guaranteed corrected errors fraction for the H-LDPC codes under the first decoding algorithm was obtained in 2011. The second decoding algorithm considers H-LDPC as the irregular LDPC code and uses the well-known majority decoding algorithm. The lower-bound on the guaranteed corrected errors fraction for H-LDPC code under the second decoding algorithm is introduced for the first time in this paper. Numerical results for the lower-bound, obtained in this paper for H-LDPC code under the second decoding algorithm, significantly exceed the numerical results for the best known lower-bounds, obtained previously for H-LDPC code under the first decoding algorithm.","PeriodicalId":270689,"journal":{"name":"2014 XIV International Symposium on Problems of Redundancy in Information and Control Systems","volume":"50 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2014-06-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"2014 XIV International Symposium on Problems of Redundancy in Information and Control Systems","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1109/RED.2014.7016711","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 0

Abstract

This paper deals with the Low-Density Parity-Check codes with the constituent Hamming codes (H-LDPC codes) and two different iterative hard-decision low-complexity decoding algorithms. Both algorithms are based on the same main idea: the decreasing of the syndrome weight on each step of the decoding algorithm. The first decoding algorithm uses the properties of the constituent Hamming code. The best known lower-bound on the guaranteed corrected errors fraction for the H-LDPC codes under the first decoding algorithm was obtained in 2011. The second decoding algorithm considers H-LDPC as the irregular LDPC code and uses the well-known majority decoding algorithm. The lower-bound on the guaranteed corrected errors fraction for H-LDPC code under the second decoding algorithm is introduced for the first time in this paper. Numerical results for the lower-bound, obtained in this paper for H-LDPC code under the second decoding algorithm, significantly exceed the numerical results for the best known lower-bounds, obtained previously for H-LDPC code under the first decoding algorithm.
低复杂度解码H-LDPC码作为不规则LDPC码的纠错能力
本文研究了具有组成汉明码(H-LDPC码)的低密度奇偶校验码和两种不同的迭代硬判决低复杂度译码算法。这两种算法都基于相同的主要思想:在解码算法的每一步中,综合征权值都是递减的。第一种解码算法利用汉明码的组成特性。目前已知的H-LDPC码在第一种译码算法下的保证纠错分数下界是在2011年得到的。第二种译码算法将H-LDPC视为不规则LDPC码,采用了众所周知的多数译码算法。本文首次介绍了H-LDPC码在第二种译码算法下保证纠错分数的下界。本文在第二种译码算法下得到的H-LDPC码下界的数值结果,明显超过了之前在第一种译码算法下得到的已知的H-LDPC码下界的数值结果。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 求助全文
来源期刊
自引率
0.00%
发文量
0
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:604180095
Book学术官方微信