Within-Network Classification in Temporal Graphs

C. Ryther, J. Simonsen
{"title":"Within-Network Classification in Temporal Graphs","authors":"C. Ryther, J. Simonsen","doi":"10.1109/ICDMW.2018.00041","DOIUrl":null,"url":null,"abstract":"Recent results indicate that static graph features might not be adequate to solve challenges in graphs involving a temporal dimension. We analyze several classification problems using already established temporal metrics, and we propose label-sensitive and recency-sensitive variants of these metrics that capture labeling information and additional temporal patterns in the data. We test all new and old metrics, and a baseline based on a standard disease-spreading model, using tuned off-the-shelf classifiers on 9 datasets of varying size and usage domain. Our experiments indicate that usage of label-and recency-sensitive metrics on real-world data provides more accurate results than static approaches and approaches based on temporal metrics alone.","PeriodicalId":259600,"journal":{"name":"2018 IEEE International Conference on Data Mining Workshops (ICDMW)","volume":"281 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2018-11-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"2018 IEEE International Conference on Data Mining Workshops (ICDMW)","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1109/ICDMW.2018.00041","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 0

Abstract

Recent results indicate that static graph features might not be adequate to solve challenges in graphs involving a temporal dimension. We analyze several classification problems using already established temporal metrics, and we propose label-sensitive and recency-sensitive variants of these metrics that capture labeling information and additional temporal patterns in the data. We test all new and old metrics, and a baseline based on a standard disease-spreading model, using tuned off-the-shelf classifiers on 9 datasets of varying size and usage domain. Our experiments indicate that usage of label-and recency-sensitive metrics on real-world data provides more accurate results than static approaches and approaches based on temporal metrics alone.
时态图的网络内分类
最近的结果表明,静态图形特征可能不足以解决涉及时间维度的图形中的挑战。我们使用已经建立的时间度量分析了几个分类问题,并提出了这些度量的标签敏感和最近敏感变体,这些变体捕获数据中的标记信息和额外的时间模式。我们测试了所有新的和旧的指标,以及基于标准疾病传播模型的基线,在9个不同大小和使用领域的数据集上使用经过调整的现成分类器。我们的实验表明,与静态方法和仅基于时间指标的方法相比,在现实世界数据上使用标签和最近敏感指标提供了更准确的结果。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 求助全文
来源期刊
自引率
0.00%
发文量
0
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:604180095
Book学术官方微信