Sparse sensing for composite matched subspace detection

M. Coutiño, S. P. Chepuri, G. Leus
{"title":"Sparse sensing for composite matched subspace detection","authors":"M. Coutiño, S. P. Chepuri, G. Leus","doi":"10.1109/CAMSAP.2017.8313125","DOIUrl":null,"url":null,"abstract":"In this paper, we propose sensor selection strategies, based on convex and greedy approaches, for designing sparse samplers for composite detection. Particularly, we focus our attention on sparse samplers for matched subspace detectors. Differently from previous works, that mostly rely on random matrices to perform compression of the sub-spaces, we show how deterministic samplers can be designed under a Neyman-Pearson-like setting when the generalized likelihood ratio test is used. For a less stringent case than the worst case design, we introduce a submodular cost that obtains comparable results with its convex counterpart, while having a linear time heuristic for its near optimal maximization.","PeriodicalId":315977,"journal":{"name":"2017 IEEE 7th International Workshop on Computational Advances in Multi-Sensor Adaptive Processing (CAMSAP)","volume":"14 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2017-12-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"2017 IEEE 7th International Workshop on Computational Advances in Multi-Sensor Adaptive Processing (CAMSAP)","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1109/CAMSAP.2017.8313125","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 0

Abstract

In this paper, we propose sensor selection strategies, based on convex and greedy approaches, for designing sparse samplers for composite detection. Particularly, we focus our attention on sparse samplers for matched subspace detectors. Differently from previous works, that mostly rely on random matrices to perform compression of the sub-spaces, we show how deterministic samplers can be designed under a Neyman-Pearson-like setting when the generalized likelihood ratio test is used. For a less stringent case than the worst case design, we introduce a submodular cost that obtains comparable results with its convex counterpart, while having a linear time heuristic for its near optimal maximization.
稀疏感知复合匹配子空间检测
在本文中,我们提出了基于凸和贪婪方法的传感器选择策略,用于设计用于复合检测的稀疏采样器。我们特别关注匹配子空间检测器的稀疏采样器。与以往的工作不同,主要依靠随机矩阵来执行子空间的压缩,我们展示了当使用广义似然比检验时,如何在类内曼-皮尔逊设置下设计确定性采样器。对于比最坏情况设计更不严格的情况,我们引入了一个子模成本,它获得了与其凸对应的可比较的结果,同时具有线性时间启发式的近最优最大化。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 求助全文
来源期刊
自引率
0.00%
发文量
0
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信