Median-of-k Jumplists and Dangling-Min BSTs

M. Nebel, Elisabeth Neumann, Sebastian Wild
{"title":"Median-of-k Jumplists and Dangling-Min BSTs","authors":"M. Nebel, Elisabeth Neumann, Sebastian Wild","doi":"10.1137/1.9781611975505.8","DOIUrl":null,"url":null,"abstract":"We extend randomized jumplists introduced by Bronnimann et al. (STACS 2003) to choose jump-pointer targets as median of a small sample for better search costs, and present randomized algorithms with expected $O(\\log n)$ time complexity that maintain the probability distribution of jump pointers upon insertions and deletions. We analyze the expected costs to search, insert and delete a random element, and we show that omitting jump pointers in small sublists hardly affects search costs, but significantly reduces the memory consumption. \nWe use a bijection between jumplists and \"dangling-min BSTs\", a variant of (fringe-balanced) binary search trees for the analysis. Despite their similarities, some standard analysis techniques for search trees fail for dangling-min trees (and hence for jumplists).","PeriodicalId":340112,"journal":{"name":"Workshop on Analytic Algorithmics and Combinatorics","volume":"1 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2016-09-27","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Workshop on Analytic Algorithmics and Combinatorics","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1137/1.9781611975505.8","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 0

Abstract

We extend randomized jumplists introduced by Bronnimann et al. (STACS 2003) to choose jump-pointer targets as median of a small sample for better search costs, and present randomized algorithms with expected $O(\log n)$ time complexity that maintain the probability distribution of jump pointers upon insertions and deletions. We analyze the expected costs to search, insert and delete a random element, and we show that omitting jump pointers in small sublists hardly affects search costs, but significantly reduces the memory consumption. We use a bijection between jumplists and "dangling-min BSTs", a variant of (fringe-balanced) binary search trees for the analysis. Despite their similarities, some standard analysis techniques for search trees fail for dangling-min trees (and hence for jumplists).
中位跳投和悬挂式跳投
我们扩展了Bronnimann等人(STACS 2003)引入的随机跳转列表,以选择跳转指针目标作为小样本的中位数以获得更好的搜索成本,并提出了期望时间复杂度为$O(\log n)$的随机算法,该算法保持跳转指针在插入和删除时的概率分布。我们分析了搜索、插入和删除随机元素的预期成本,并表明在小子列表中省略跳转指针几乎不会影响搜索成本,但会显著减少内存消耗。我们使用跳跳器和“悬挂最小BSTs”之间的双射,这是(边缘平衡)二叉搜索树的一种变体。尽管它们有相似之处,但搜索树的一些标准分析技术不适用于悬min树(因此也不适用于跳线)。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 求助全文
来源期刊
自引率
0.00%
发文量
0
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信