Vehicular VLC Frequency Domain Channel Sounding and Characterization

B. Turan, Gokhan Gurbilek, A. Uyrus, S. Ergen
{"title":"Vehicular VLC Frequency Domain Channel Sounding and Characterization","authors":"B. Turan, Gokhan Gurbilek, A. Uyrus, S. Ergen","doi":"10.1109/VNC.2018.8628323","DOIUrl":null,"url":null,"abstract":"Vehicular visible light communication (V2LC) has recently gained popularity as a complementary technology to radio frequency (RF) based vehicular communication schemes due to its low-cost, secure and RF-interference free nature. In this paper, we propose outdoor vehicular visible light communication (V2LC) frequency domain channel sounding based channel model characterization under night, sunset and sun conditions with the usage of vector network analyzer (VNA) and commercial off-the-shelf (COTS) automotive light emitting diode (LED) light. We further bring forward a new practical system bandwidth criterion named as effective usable bandwidth (EUB) for an end-to-end V2LC system with respect to the real world measurements. We demonstrate outdoor static V2LC channel measurement results, taking into account vehicle light emitting diode (LED) response, road reflections from nearby vehicles and various daylight conditions with respect to varying inter-vehicular distances. Measurement results indicate that, sunlight decreases system effective usable bandwidth due to the limited dynamic range of avalanche photodiode (APD), nearby vehicles cause constructive interference whereas road reflections change time dispersion characteristics of the V2LC channel.","PeriodicalId":335017,"journal":{"name":"2018 IEEE Vehicular Networking Conference (VNC)","volume":"1 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2018-12-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"24","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"2018 IEEE Vehicular Networking Conference (VNC)","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1109/VNC.2018.8628323","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 24

Abstract

Vehicular visible light communication (V2LC) has recently gained popularity as a complementary technology to radio frequency (RF) based vehicular communication schemes due to its low-cost, secure and RF-interference free nature. In this paper, we propose outdoor vehicular visible light communication (V2LC) frequency domain channel sounding based channel model characterization under night, sunset and sun conditions with the usage of vector network analyzer (VNA) and commercial off-the-shelf (COTS) automotive light emitting diode (LED) light. We further bring forward a new practical system bandwidth criterion named as effective usable bandwidth (EUB) for an end-to-end V2LC system with respect to the real world measurements. We demonstrate outdoor static V2LC channel measurement results, taking into account vehicle light emitting diode (LED) response, road reflections from nearby vehicles and various daylight conditions with respect to varying inter-vehicular distances. Measurement results indicate that, sunlight decreases system effective usable bandwidth due to the limited dynamic range of avalanche photodiode (APD), nearby vehicles cause constructive interference whereas road reflections change time dispersion characteristics of the V2LC channel.
车载VLC频域信道探测与表征
车辆可见光通信(V2LC)由于其低成本、安全和无射频干扰的特性,最近作为基于射频(RF)的车辆通信方案的补充技术而受到欢迎。在本文中,我们利用矢量网络分析仪(VNA)和商用现货(COTS)汽车发光二极管(LED)灯,提出了基于夜间、日落和太阳条件下户外车辆可见光通信(V2LC)频域信道探测的信道模型表征。我们进一步提出了一个新的实用的系统带宽标准,即端到端V2LC系统的有效可用带宽(EUB)。我们展示了室外静态V2LC通道测量结果,考虑到车辆发光二极管(LED)响应、附近车辆的道路反射以及不同车辆间距离的各种日光条件。测量结果表明,由于雪崩光电二极管(APD)的动态范围有限,太阳光降低了系统的有效可用带宽,附近车辆产生建设性干扰,而道路反射改变了V2LC通道的时间色散特性。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 求助全文
来源期刊
自引率
0.00%
发文量
0
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信