Changmin Lee, Bonhong Koo, Na-Rae Kim, Huseyin Birkan Yilmaz, N. Farsad, A. Eckford, C. Chae
{"title":"Demo: Molecular MIMO with Drift","authors":"Changmin Lee, Bonhong Koo, Na-Rae Kim, Huseyin Birkan Yilmaz, N. Farsad, A. Eckford, C. Chae","doi":"10.1145/2789168.2789181","DOIUrl":null,"url":null,"abstract":"In molecular communication information is transferred with the use of molecules. Molecular multiple-input multiple- output (MIMO) system with drift (positive velocity) at macro- scale will be presented and the improvement against single- input single-output (SISO) molecular communication systems will be verified via our testbed. Until now it was unclear whether MIMO techniques, which are extensively used in modern radio frequency (RF) communications, could be applied to molecular communication. In the demonstration, using our MIMO testbed we will show that we can achieve nearly 1.7 times higher data rate than SISO molecular communication systems. Moreover, signal-to-inter-link-interfeence metric for one-shot signal will be depicted for a given symbol duration.","PeriodicalId":424497,"journal":{"name":"Proceedings of the 21st Annual International Conference on Mobile Computing and Networking","volume":"15 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2015-09-07","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"3","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Proceedings of the 21st Annual International Conference on Mobile Computing and Networking","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1145/2789168.2789181","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 3
Abstract
In molecular communication information is transferred with the use of molecules. Molecular multiple-input multiple- output (MIMO) system with drift (positive velocity) at macro- scale will be presented and the improvement against single- input single-output (SISO) molecular communication systems will be verified via our testbed. Until now it was unclear whether MIMO techniques, which are extensively used in modern radio frequency (RF) communications, could be applied to molecular communication. In the demonstration, using our MIMO testbed we will show that we can achieve nearly 1.7 times higher data rate than SISO molecular communication systems. Moreover, signal-to-inter-link-interfeence metric for one-shot signal will be depicted for a given symbol duration.