Energy complexity of polar codes

Christopher G. Blake, F. Kschischang
{"title":"Energy complexity of polar codes","authors":"Christopher G. Blake, F. Kschischang","doi":"10.1109/ISIT.2016.7541411","DOIUrl":null,"url":null,"abstract":"Sequences of VLSI circuits implemented according to the Thompson VLSI model that compute encoding and decoding functions, called coding schemes, are classified according to the rate at which their associated block error probability scales with block length N. It is shown that coding schemes for binary symmetric channels with probability of error that scales as O(f(N)) must have encoding and decoding energy that scales at least as Ω(N√(-ln f (N))). Polar coding schemes of rate greater than 1/2 are shown to have encoding and decoding energy that scales at least as Ω(N3/2). This lower bound is achievable up to polylogarithmic factors on a mesh-network.","PeriodicalId":198767,"journal":{"name":"2016 IEEE International Symposium on Information Theory (ISIT)","volume":"52 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2016-07-10","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"3","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"2016 IEEE International Symposium on Information Theory (ISIT)","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1109/ISIT.2016.7541411","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 3

Abstract

Sequences of VLSI circuits implemented according to the Thompson VLSI model that compute encoding and decoding functions, called coding schemes, are classified according to the rate at which their associated block error probability scales with block length N. It is shown that coding schemes for binary symmetric channels with probability of error that scales as O(f(N)) must have encoding and decoding energy that scales at least as Ω(N√(-ln f (N))). Polar coding schemes of rate greater than 1/2 are shown to have encoding and decoding energy that scales at least as Ω(N3/2). This lower bound is achievable up to polylogarithmic factors on a mesh-network.
极性码的能量复杂度
根据Thompson VLSI模型实现的计算编码和解码功能的VLSI电路序列,称为编码方案,根据其相关块错误概率随块长度N的比例进行分类。结果表明,误差概率为O(f(N))的二进制对称信道的编码方案必须具有至少缩放为Ω(N√(-ln f(N)))的编码和解码能量。速率大于1/2的极性编码方案的编码和解码能量至少为Ω(N3/2)。这个下界可以在网格网络上达到多对数因子。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 求助全文
来源期刊
自引率
0.00%
发文量
0
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信