Application of intelligent control based on neural networks in power system

Sheng-Chun Yang, Lixin Yin
{"title":"Application of intelligent control based on neural networks in power system","authors":"Sheng-Chun Yang, Lixin Yin","doi":"10.1109/ICSESS.2011.5982234","DOIUrl":null,"url":null,"abstract":"Increasingly nonlinear dynamic loads have been connected into power systems; such as variable speed drives, robotic factories and power electronics loads. This adds to the complexity of load modeling. The increasing complexity of the modern power grid highlights the need for advanced modeling and control techniques for effective control of excitation and turbine systems. The crucial factors affecting the modern power systems today is voltage control and system stabilization during small and large disturbances. Simulation studies and real-time laboratory experimental studies carried out are described and the results show the successful control of the power system excitation and turbine systems with adaptive and optimal neurocontrol approaches.","PeriodicalId":108533,"journal":{"name":"2011 IEEE 2nd International Conference on Software Engineering and Service Science","volume":"114 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2011-07-15","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"2","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"2011 IEEE 2nd International Conference on Software Engineering and Service Science","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1109/ICSESS.2011.5982234","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 2

Abstract

Increasingly nonlinear dynamic loads have been connected into power systems; such as variable speed drives, robotic factories and power electronics loads. This adds to the complexity of load modeling. The increasing complexity of the modern power grid highlights the need for advanced modeling and control techniques for effective control of excitation and turbine systems. The crucial factors affecting the modern power systems today is voltage control and system stabilization during small and large disturbances. Simulation studies and real-time laboratory experimental studies carried out are described and the results show the successful control of the power system excitation and turbine systems with adaptive and optimal neurocontrol approaches.
基于神经网络的智能控制在电力系统中的应用
越来越多的非线性动态负荷被接入电力系统;比如变速驱动、机器人工厂和电力电子负载。这增加了负载建模的复杂性。随着现代电网的日益复杂,需要先进的建模和控制技术来有效地控制励磁和涡轮系统。影响现代电力系统的关键因素是电压控制和系统在小、大扰动下的稳定。仿真研究和实时实验室实验研究表明,采用自适应和最优神经控制方法成功地控制了电力系统励磁和涡轮系统。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 求助全文
来源期刊
自引率
0.00%
发文量
0
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信