HSP: Hybrid Synchronous Parallelism for Fast Distributed Deep Learning

Yijun Li, Jiawei Huang, Zhaoyi Li, Shengwen Zhou, Wanchun Jiang, Jianxin Wang
{"title":"HSP: Hybrid Synchronous Parallelism for Fast Distributed Deep Learning","authors":"Yijun Li, Jiawei Huang, Zhaoyi Li, Shengwen Zhou, Wanchun Jiang, Jianxin Wang","doi":"10.1145/3545008.3545024","DOIUrl":null,"url":null,"abstract":"In the parameter-server-based distributed deep learning system, the workers simultaneously communicate with the parameter server to refine model parameters, easily resulting in severe network contention. To solve this problem, Asynchronous Parallel (ASP) strategy enables each worker to update the parameter independently without synchronization. However, due to the inconsistency of parameters among workers, ASP experiences accuracy loss and slow convergence. In this paper, we propose Hybrid Synchronous Parallelism (HSP), which mitigates the communication contention without excessive degradation of convergence speed. Specifically, the parameter server sequentially pulls gradients from workers to eliminate network congestion and synchronizes all up-to-date parameters after each iteration. Meanwhile, HSP cautiously lets idle workers to compute with out-of-date weights to maximize the utilizations of computing resources. We provide theoretical analysis of convergence efficiency and implement HSP on popular deep learning (DL) framework. The test results show that HSP improves the convergence speedup of three classical deep learning models by up to 67%.","PeriodicalId":360504,"journal":{"name":"Proceedings of the 51st International Conference on Parallel Processing","volume":"3 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2022-08-29","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"1","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Proceedings of the 51st International Conference on Parallel Processing","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1145/3545008.3545024","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 1

Abstract

In the parameter-server-based distributed deep learning system, the workers simultaneously communicate with the parameter server to refine model parameters, easily resulting in severe network contention. To solve this problem, Asynchronous Parallel (ASP) strategy enables each worker to update the parameter independently without synchronization. However, due to the inconsistency of parameters among workers, ASP experiences accuracy loss and slow convergence. In this paper, we propose Hybrid Synchronous Parallelism (HSP), which mitigates the communication contention without excessive degradation of convergence speed. Specifically, the parameter server sequentially pulls gradients from workers to eliminate network congestion and synchronizes all up-to-date parameters after each iteration. Meanwhile, HSP cautiously lets idle workers to compute with out-of-date weights to maximize the utilizations of computing resources. We provide theoretical analysis of convergence efficiency and implement HSP on popular deep learning (DL) framework. The test results show that HSP improves the convergence speedup of three classical deep learning models by up to 67%.
HSP:快速分布式深度学习的混合同步并行
在基于参数服务器的分布式深度学习系统中,工作人员同时与参数服务器进行通信以细化模型参数,容易导致严重的网络争用。为了解决这一问题,异步并行(ASP)策略使每个worker无需同步即可独立更新参数。然而,由于工人之间的参数不一致,ASP存在精度损失和收敛缓慢的问题。在本文中,我们提出了混合同步并行(HSP),它在不过度降低收敛速度的情况下减轻了通信争用。具体来说,参数服务器依次从worker提取梯度以消除网络拥塞,并在每次迭代后同步所有最新参数。同时,HSP谨慎地让空闲的工人使用过时的权重进行计算,以最大限度地利用计算资源。我们对收敛效率进行了理论分析,并在流行的深度学习框架上实现了HSP。测试结果表明,HSP将三种经典深度学习模型的收敛速度提高了67%。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 求助全文
来源期刊
自引率
0.00%
发文量
0
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:604180095
Book学术官方微信