Matrix Factorization in Latent Semantic Indexing

Wei Shean Ng, Wen Kai Adrian Tang
{"title":"Matrix Factorization in Latent Semantic Indexing","authors":"Wei Shean Ng, Wen Kai Adrian Tang","doi":"10.1109/sea-stem53614.2021.9667956","DOIUrl":null,"url":null,"abstract":"Matrix factorizations are methods used to factorize a matrix into a product of two or more matrices. Matrix factorizations are used to reduce the dimension of a data set that help in reducing the computational time. In this project, we study how Singular Value Decomposition (SVD) and Non-Negative Matrix Factorization (NMF) are applied in Latent Semantic Indexing (LSI). LSI is a search algorithm where a set of documents is returned based on the keywords searched by the user. The performance of the two types of matrix factorizations are compared while applying them in LSI.","PeriodicalId":405480,"journal":{"name":"2021 2nd SEA-STEM International Conference (SEA-STEM)","volume":"43 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2021-11-24","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"2021 2nd SEA-STEM International Conference (SEA-STEM)","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1109/sea-stem53614.2021.9667956","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 0

Abstract

Matrix factorizations are methods used to factorize a matrix into a product of two or more matrices. Matrix factorizations are used to reduce the dimension of a data set that help in reducing the computational time. In this project, we study how Singular Value Decomposition (SVD) and Non-Negative Matrix Factorization (NMF) are applied in Latent Semantic Indexing (LSI). LSI is a search algorithm where a set of documents is returned based on the keywords searched by the user. The performance of the two types of matrix factorizations are compared while applying them in LSI.
潜在语义索引中的矩阵分解
矩阵分解是将一个矩阵分解成两个或多个矩阵的乘积的方法。矩阵分解用于减少数据集的维数,这有助于减少计算时间。在这个项目中,我们研究了奇异值分解(SVD)和非负矩阵分解(NMF)在潜在语义索引(LSI)中的应用。LSI是一种根据用户搜索的关键字返回一组文档的搜索算法。比较了两种矩阵分解方法在大规模集成电路中的应用。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 求助全文
来源期刊
自引率
0.00%
发文量
0
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信