An Improvement of BM3D Image Denoising and Deblurring Algorithm by Generalized Total Variation

A. Nasonov, A. Krylov
{"title":"An Improvement of BM3D Image Denoising and Deblurring Algorithm by Generalized Total Variation","authors":"A. Nasonov, A. Krylov","doi":"10.1109/EUVIP.2018.8611693","DOIUrl":null,"url":null,"abstract":"In this work we propose a post-processing method for BM3D algorithm that has become a state-of-the-art image denoising and deblurring algorithm. Although BM3D algorithm produces results with high objective metrics values, it also adds noticeable high-frequency artifacts. We suppress these artifacts using second order Total Generalized Variation (TG V) algorithm. TGV algorithm is an extension of Total Variation denoising method but it does not tend to make images piecewise constant. We also suggest an efficient numerical scheme for TGV minimization. In order to validate the proposed idea, tests were performed on noisy real images and synthetic images with different levels of noise.","PeriodicalId":252212,"journal":{"name":"2018 7th European Workshop on Visual Information Processing (EUVIP)","volume":"11 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2018-11-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"10","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"2018 7th European Workshop on Visual Information Processing (EUVIP)","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1109/EUVIP.2018.8611693","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 10

Abstract

In this work we propose a post-processing method for BM3D algorithm that has become a state-of-the-art image denoising and deblurring algorithm. Although BM3D algorithm produces results with high objective metrics values, it also adds noticeable high-frequency artifacts. We suppress these artifacts using second order Total Generalized Variation (TG V) algorithm. TGV algorithm is an extension of Total Variation denoising method but it does not tend to make images piecewise constant. We also suggest an efficient numerical scheme for TGV minimization. In order to validate the proposed idea, tests were performed on noisy real images and synthetic images with different levels of noise.
基于广义全变分的BM3D图像去噪去模糊算法改进
在这项工作中,我们提出了BM3D算法的后处理方法,该算法已成为最先进的图像去噪和去模糊算法。虽然BM3D算法产生的结果具有较高的客观度量值,但它也增加了明显的高频伪影。我们使用二阶总广义变分(TG V)算法抑制这些伪影。TGV算法是对全变分去噪方法的一种扩展,但它并不倾向于使图像分段不变。我们还提出了一种有效的TGV最小化数值格式。为了验证所提出的思想,在有噪声的真实图像和具有不同程度噪声的合成图像上进行了测试。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 求助全文
来源期刊
自引率
0.00%
发文量
0
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:604180095
Book学术官方微信