Random walks on hyperbolic spaces: second order expansion of the rate function at the drift

Richard Aoun, P. Mathieu, Cagri Sert
{"title":"Random walks on hyperbolic spaces: second order expansion of the rate function at the drift","authors":"Richard Aoun, P. Mathieu, Cagri Sert","doi":"10.5802/jep.225","DOIUrl":null,"url":null,"abstract":"Let $(X,d)$ be a geodesic Gromov-hyperbolic space, $o \\in X$ a basepoint and $\\mu$ a countably supported non-elementary probability measure on $\\operatorname{Isom}(X)$. Denote by $z_n$ the random walk on $X$ driven by the probability measure $\\mu$. Supposing that $\\mu$ has finite exponential moment, we give a second-order Taylor expansion of the large deviation rate function of the sequence $\\frac{1}{n}d(z_n,o)$ and show that the corresponding coefficient is expressed by the variance in the central limit theorem satisfied by the sequence $d(z_n,o)$. This provides a positive answer to a question raised in \\cite{BMSS}. The proof relies on the study of the Laplace transform of $d(z_n,o)$ at the origin using a martingale decomposition first introduced by Benoist--Quint together with an exponential submartingale transform and large deviation estimates for the quadratic variation process of certain martingales.","PeriodicalId":106406,"journal":{"name":"Journal de l’École polytechnique — Mathématiques","volume":"106 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2021-12-29","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"1","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Journal de l’École polytechnique — Mathématiques","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.5802/jep.225","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 1

Abstract

Let $(X,d)$ be a geodesic Gromov-hyperbolic space, $o \in X$ a basepoint and $\mu$ a countably supported non-elementary probability measure on $\operatorname{Isom}(X)$. Denote by $z_n$ the random walk on $X$ driven by the probability measure $\mu$. Supposing that $\mu$ has finite exponential moment, we give a second-order Taylor expansion of the large deviation rate function of the sequence $\frac{1}{n}d(z_n,o)$ and show that the corresponding coefficient is expressed by the variance in the central limit theorem satisfied by the sequence $d(z_n,o)$. This provides a positive answer to a question raised in \cite{BMSS}. The proof relies on the study of the Laplace transform of $d(z_n,o)$ at the origin using a martingale decomposition first introduced by Benoist--Quint together with an exponential submartingale transform and large deviation estimates for the quadratic variation process of certain martingales.
双曲空间上的随机漫步:在漂移处速率函数的二阶展开
设$(X,d)$为测地线格罗莫夫-双曲空间,$o \in X$为基点,$\mu$为$\operatorname{Isom}(X)$上的可数支持非初等概率测度。用$z_n$表示由概率测度$\mu$驱动的$X$上的随机游走。假设$\mu$具有有限的指数矩,我们给出了序列$\frac{1}{n}d(z_n,o)$的大偏差率函数的二阶泰勒展开式,并证明了相应的系数由序列$d(z_n,o)$所满足的中心极限定理中的方差表示。这为\cite{BMSS}中提出的问题提供了一个肯定的答案。该证明依赖于对原点处$d(z_n,o)$的拉普拉斯变换的研究,该变换使用了首先由Benoist—Quint引入的鞅分解,以及对某些鞅的二次变分过程的指数次鞅变换和大偏差估计。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 求助全文
来源期刊
自引率
0.00%
发文量
0
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信