Monthly Solar Radiation Maps for Morocco Based on the Visualization of Clustering

Anas Hajou, Y. E. Mghouchi, M. Chaoui
{"title":"Monthly Solar Radiation Maps for Morocco Based on the Visualization of Clustering","authors":"Anas Hajou, Y. E. Mghouchi, M. Chaoui","doi":"10.1109/IRSEC53969.2021.9741162","DOIUrl":null,"url":null,"abstract":"Assessment of the solar radiation potential is a necessity for the establishment of solar projects. It is difficult to evaluate the solar energy potential for areas far from the meteorological stations. Current methods for estimating solar energy are site-dependent or limited to certain areas. Therefore, a method for solar radiation maps using unsupervised machine learning techniques and satellite products is proposed. The method uses the hierarchical dendrogram to determine the suitable number of distinct areas for each month, then this number is used as input for Agglomerative Hierarchical Clustering (AHC) that clusters areas into the given number for each month. The maps are homogeneous in space and reflect the seasonal character of solar radiation. The resulting solar maps cover all regions of Morocco and can help for preliminary assessment and decision making, especially for areas far from solar radiation ground stations.","PeriodicalId":361856,"journal":{"name":"2021 9th International Renewable and Sustainable Energy Conference (IRSEC)","volume":"53 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2021-11-23","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"2021 9th International Renewable and Sustainable Energy Conference (IRSEC)","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1109/IRSEC53969.2021.9741162","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 0

Abstract

Assessment of the solar radiation potential is a necessity for the establishment of solar projects. It is difficult to evaluate the solar energy potential for areas far from the meteorological stations. Current methods for estimating solar energy are site-dependent or limited to certain areas. Therefore, a method for solar radiation maps using unsupervised machine learning techniques and satellite products is proposed. The method uses the hierarchical dendrogram to determine the suitable number of distinct areas for each month, then this number is used as input for Agglomerative Hierarchical Clustering (AHC) that clusters areas into the given number for each month. The maps are homogeneous in space and reflect the seasonal character of solar radiation. The resulting solar maps cover all regions of Morocco and can help for preliminary assessment and decision making, especially for areas far from solar radiation ground stations.
基于聚类可视化的摩洛哥月太阳辐射图
评估太阳辐射潜力是建立太阳能项目的必要条件。在远离气象站的地区,太阳能潜力很难评估。目前估算太阳能的方法依赖于地点或局限于某些地区。因此,提出了一种利用无监督机器学习技术和卫星产品绘制太阳辐射图的方法。该方法使用分层树形图确定每个月不同区域的合适数量,然后将该数字用作聚集分层聚类(AHC)的输入,AHC将每个月的区域聚类到给定的数量中。这些地图在空间上是均匀的,反映了太阳辐射的季节性特征。由此产生的太阳地图覆盖摩洛哥所有地区,可以帮助初步评估和决策,特别是远离太阳辐射地面站的地区。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 求助全文
来源期刊
自引率
0.00%
发文量
0
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信