New Filtering Approaches to Improve the Classification Capability of Resting-state fMRI Transfer Functions

Ehsan Shahrabi Farahani, S. H. Choudhury, F. Costello, B. Goodyear, Michael R. Smith
{"title":"New Filtering Approaches to Improve the Classification Capability of Resting-state fMRI Transfer Functions","authors":"Ehsan Shahrabi Farahani, S. H. Choudhury, F. Costello, B. Goodyear, Michael R. Smith","doi":"10.1109/GlobalSIP45357.2019.8969301","DOIUrl":null,"url":null,"abstract":"Resting-state functional magnetic resonance imaging (fMRI) uses spontaneous regional brain activity to identify functional networks. Transfer functions (TF) can evaluate the amplification of resting-state fMRI signal frequency components from one brain region to another, but are highly susceptible to noise spikes. Resting-state fMRI’s low-temporal resolution implies that the high frequency noise characteristics necessary to implement Weiner filtering are not available. We investigated new approaches that replace the standard Weiner filter noise parameter with an alternative outlier suppression parameter (OSP) to identify and remove inaccurate TF estimates. When compared to standard TF approaches, our new filtering approaches shows an improved ability to distinguish optic neuritis (ON) patients from healthy volunteers, as well as patients experiencing ON as a clinically isolated syndrome (CIS) from ON patients with relapsing-remitting multiple sclerosis (RRMS).","PeriodicalId":221378,"journal":{"name":"2019 IEEE Global Conference on Signal and Information Processing (GlobalSIP)","volume":"64 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2019-11-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"2019 IEEE Global Conference on Signal and Information Processing (GlobalSIP)","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1109/GlobalSIP45357.2019.8969301","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 0

Abstract

Resting-state functional magnetic resonance imaging (fMRI) uses spontaneous regional brain activity to identify functional networks. Transfer functions (TF) can evaluate the amplification of resting-state fMRI signal frequency components from one brain region to another, but are highly susceptible to noise spikes. Resting-state fMRI’s low-temporal resolution implies that the high frequency noise characteristics necessary to implement Weiner filtering are not available. We investigated new approaches that replace the standard Weiner filter noise parameter with an alternative outlier suppression parameter (OSP) to identify and remove inaccurate TF estimates. When compared to standard TF approaches, our new filtering approaches shows an improved ability to distinguish optic neuritis (ON) patients from healthy volunteers, as well as patients experiencing ON as a clinically isolated syndrome (CIS) from ON patients with relapsing-remitting multiple sclerosis (RRMS).
提高静息态fMRI传递函数分类能力的新滤波方法
静息状态功能磁共振成像(fMRI)利用自发的脑区域活动来识别功能网络。传递函数(TF)可以评估静息状态fMRI信号频率分量从一个脑区到另一个脑区的放大,但极易受到噪声峰值的影响。静息状态fMRI的低时间分辨率意味着实现韦纳滤波所需的高频噪声特性不可用。我们研究了用替代离群值抑制参数(OSP)取代标准韦纳滤波器噪声参数的新方法,以识别和去除不准确的TF估计。与标准TF方法相比,我们的新过滤方法可以更好地区分视神经炎(ON)患者和健康志愿者,以及作为临床孤立综合征(CIS)经历视神经炎的患者和复发缓解型多发性硬化症(RRMS)的ON患者。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 求助全文
来源期刊
自引率
0.00%
发文量
0
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:604180095
Book学术官方微信