Estimating Semantic Relationships between Sentences Using Word Embedding with BERT

Ryoya Kaneda, M. Okada, Naoki Mori
{"title":"Estimating Semantic Relationships between Sentences Using Word Embedding with BERT","authors":"Ryoya Kaneda, M. Okada, Naoki Mori","doi":"10.1109/iiai-aai53430.2021.00009","DOIUrl":null,"url":null,"abstract":"In this study, we focus on conjunctions between sentences to estimate the semantic relations between sentences. As a method for estimating the types of hidden conjunctions, we propose a method using a word embedding with bidirectional encoder representations from the transformer (BERT), which has shown high accuracy in various natural language processing tasks. By using Japanese newspaper articles, we have confirmed the effectiveness of the proposed method in estimating the presence or absence of conjunctions and the types of conjunctions. There was a difference in the accuracy by changing the estimator used to input word embedding. The result varied greatly depending on the conjunction.","PeriodicalId":414070,"journal":{"name":"2021 10th International Congress on Advanced Applied Informatics (IIAI-AAI)","volume":"52 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2021-07-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"2021 10th International Congress on Advanced Applied Informatics (IIAI-AAI)","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1109/iiai-aai53430.2021.00009","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 0

Abstract

In this study, we focus on conjunctions between sentences to estimate the semantic relations between sentences. As a method for estimating the types of hidden conjunctions, we propose a method using a word embedding with bidirectional encoder representations from the transformer (BERT), which has shown high accuracy in various natural language processing tasks. By using Japanese newspaper articles, we have confirmed the effectiveness of the proposed method in estimating the presence or absence of conjunctions and the types of conjunctions. There was a difference in the accuracy by changing the estimator used to input word embedding. The result varied greatly depending on the conjunction.
基于BERT的词嵌入估计句子间语义关系
在本研究中,我们主要关注句子之间的连词来估计句子之间的语义关系。作为一种估计隐藏连词类型的方法,我们提出了一种基于转换器双向编码器表示的词嵌入方法(BERT),该方法在各种自然语言处理任务中显示出较高的准确性。通过使用日本报纸文章,我们证实了所提出的方法在估计连词的存在或不存在以及连词的类型方面的有效性。通过改变输入词嵌入的估计器,在准确率上存在差异。结果因连接的不同而有很大的不同。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 求助全文
来源期刊
自引率
0.00%
发文量
0
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信