Effect of connectivity in associative memory models

J. Komlos, R. Paturi
{"title":"Effect of connectivity in associative memory models","authors":"J. Komlos, R. Paturi","doi":"10.1109/SFCS.1988.21932","DOIUrl":null,"url":null,"abstract":"The authors investigate how good connectivity properties translate into good error-correcting behavior in sparse networks of threshold elements. They determine how the eigenvalues of the interconnection graph (which in turn reflect connectivity properties) relate to the quantities, number of items stored, amount of error-correction, radius of attraction, and rate of convergence in an associative memory model consisting of a sparse network of threshold elements or neurons.<<ETX>>","PeriodicalId":113255,"journal":{"name":"[Proceedings 1988] 29th Annual Symposium on Foundations of Computer Science","volume":"26 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"1988-10-24","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"31","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"[Proceedings 1988] 29th Annual Symposium on Foundations of Computer Science","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1109/SFCS.1988.21932","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 31

Abstract

The authors investigate how good connectivity properties translate into good error-correcting behavior in sparse networks of threshold elements. They determine how the eigenvalues of the interconnection graph (which in turn reflect connectivity properties) relate to the quantities, number of items stored, amount of error-correction, radius of attraction, and rate of convergence in an associative memory model consisting of a sparse network of threshold elements or neurons.<>
联想记忆模型中连通性的影响
作者研究了在阈值元素稀疏网络中,良好的连通性如何转化为良好的纠错行为。它们决定了互连图的特征值(反过来反映了连通性属性)如何与数量、存储的项目数量、纠错量、吸引力半径和由阈值元素或神经元组成的稀疏网络组成的联想记忆模型中的收敛速度相关。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 求助全文
来源期刊
自引率
0.00%
发文量
0
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信