Fuzzy qualitative diagnosis

S. Patil, M. Hofmann
{"title":"Fuzzy qualitative diagnosis","authors":"S. Patil, M. Hofmann","doi":"10.1109/TAI.1994.346402","DOIUrl":null,"url":null,"abstract":"Purely qualitative reasoning methods suffer from two problems. Measured data values must be classified into exactly one qualitative value and qualitative relations between variables represent only direction but not strength of influence. We have previously developed a constraint-based diagnostic system which searches for the \"best\" assignment of qualitative labels to all variables using heuristic search. Key elements of the reasoning procedure are 1) deriving unknown variable values by qualitative constraint processing, 2) enumerating possible component behaviors, 3) mapping behaviors into behavior modes (some of which imply faults), and 4) focusing search on promising alternatives. In this paper we describe how a fuzzy set-based representation of variable values combined with fuzzy constraint processing admits fuzzy classification of measurements and improves accuracy and focus of the diagnostic process.<<ETX>>","PeriodicalId":262014,"journal":{"name":"Proceedings Sixth International Conference on Tools with Artificial Intelligence. TAI 94","volume":"143 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"1994-11-06","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Proceedings Sixth International Conference on Tools with Artificial Intelligence. TAI 94","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1109/TAI.1994.346402","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 0

Abstract

Purely qualitative reasoning methods suffer from two problems. Measured data values must be classified into exactly one qualitative value and qualitative relations between variables represent only direction but not strength of influence. We have previously developed a constraint-based diagnostic system which searches for the "best" assignment of qualitative labels to all variables using heuristic search. Key elements of the reasoning procedure are 1) deriving unknown variable values by qualitative constraint processing, 2) enumerating possible component behaviors, 3) mapping behaviors into behavior modes (some of which imply faults), and 4) focusing search on promising alternatives. In this paper we describe how a fuzzy set-based representation of variable values combined with fuzzy constraint processing admits fuzzy classification of measurements and improves accuracy and focus of the diagnostic process.<>
模糊定性诊断
纯粹的定性推理方法有两个问题。测量的数据值必须精确地分类为一个定性值,变量之间的定性关系只代表方向,而不代表影响的强度。我们之前开发了一个基于约束的诊断系统,该系统使用启发式搜索为所有变量搜索定性标签的“最佳”分配。推理过程的关键要素是1)通过定性约束处理获得未知变量值,2)枚举可能的组件行为,3)将行为映射到行为模式(其中一些暗示错误),以及4)集中搜索有希望的替代方案。本文描述了一种基于模糊集的变量值表示与模糊约束处理相结合的方法如何对测量值进行模糊分类,从而提高诊断过程的准确性和焦点。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 求助全文
来源期刊
自引率
0.00%
发文量
0
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:604180095
Book学术官方微信