Code Quality Prediction Under Super Extreme Class Imbalance

Noah Lee, Rui Abreu, Nachiappan Nagappan
{"title":"Code Quality Prediction Under Super Extreme Class Imbalance","authors":"Noah Lee, Rui Abreu, Nachiappan Nagappan","doi":"10.1109/ISSREW55968.2022.00047","DOIUrl":null,"url":null,"abstract":"Predicting the quality of software in the early phases of the development life cycle has various benefits to an organization's bottom line with wide applicability across industry and government. Yet, developing robust software quality prediction models in practice is a challenging task due to “super” extreme class imbalance. In this paper, we present our work on a code quality prediction framework, we call Automated Incremental Effort Investments (AIEl), to fasten the process of going from data to a performant model under super extreme class imbalance. Experiments on a large scale real-world dataset, from Meta Platforms, show that the proposed approach competes with or outperforms state-of-the art shallow and deep learning approaches. We evaluate the practical significance of the model predictions on test case prioritization efficiency, where AIEl achieves the top rank reducing code review time by 2.5 % and test case resource utilization by 9.3%.","PeriodicalId":178302,"journal":{"name":"2022 IEEE International Symposium on Software Reliability Engineering Workshops (ISSREW)","volume":"259 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2022-10-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"2022 IEEE International Symposium on Software Reliability Engineering Workshops (ISSREW)","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1109/ISSREW55968.2022.00047","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 0

Abstract

Predicting the quality of software in the early phases of the development life cycle has various benefits to an organization's bottom line with wide applicability across industry and government. Yet, developing robust software quality prediction models in practice is a challenging task due to “super” extreme class imbalance. In this paper, we present our work on a code quality prediction framework, we call Automated Incremental Effort Investments (AIEl), to fasten the process of going from data to a performant model under super extreme class imbalance. Experiments on a large scale real-world dataset, from Meta Platforms, show that the proposed approach competes with or outperforms state-of-the art shallow and deep learning approaches. We evaluate the practical significance of the model predictions on test case prioritization efficiency, where AIEl achieves the top rank reducing code review time by 2.5 % and test case resource utilization by 9.3%.
超极端类不平衡下的代码质量预测
在开发生命周期的早期阶段预测软件的质量对组织的底线有各种各样的好处,并且在行业和政府之间具有广泛的适用性。然而,由于“超级”极端的类不平衡,在实践中开发健壮的软件质量预测模型是一项具有挑战性的任务。在本文中,我们介绍了我们在代码质量预测框架上的工作,我们称之为自动化增量努力投资(AIEl),以加快在超级极端类不平衡下从数据到性能模型的过程。在Meta平台的大规模真实数据集上进行的实验表明,所提出的方法与最先进的浅学习和深度学习方法竞争或优于最先进的浅学习方法。我们评估了模型预测对测试用例优先级效率的实际意义,其中AIEl达到了最高排名,减少了2.5%的代码审查时间和9.3%的测试用例资源利用率。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 求助全文
来源期刊
自引率
0.00%
发文量
0
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信