Spherical flow diagram with finite hyperbolic chain-recurrent set

Vladislav D. Galki, O. Pochinka
{"title":"Spherical flow diagram with finite hyperbolic chain-recurrent set","authors":"Vladislav D. Galki, O. Pochinka","doi":"10.15507/2079-6900.24.202202.132-140","DOIUrl":null,"url":null,"abstract":"In this paper, authors examine flows with a finite hyperbolic chain-recurrent set without heteroclinic intersections on arbitrary closed n-manifolds. For such flows, the existence of a dual attractor and a repeller is proved. These points are separated by a (n−1)-dimensional sphere, which is secant for wandering trajectories in a complement to attractor and repeller. The study of the flow dynamics makes it possible to obtain a topological invariant, called a spherical flow scheme, consisting of multi-dimensional spheres that are the intersections of a secant sphere with invariant saddle manifolds. It is worth known that for some classes of flows spherical scheme is complete invariant. Thus, it follows from G. Fleitas results that for polar flows (with a single sink and a single source) on the surface, it is the spherical scheme that is complete equivalence invariant.","PeriodicalId":273445,"journal":{"name":"Zhurnal Srednevolzhskogo Matematicheskogo Obshchestva","volume":"30 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2022-06-30","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"1","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Zhurnal Srednevolzhskogo Matematicheskogo Obshchestva","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.15507/2079-6900.24.202202.132-140","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 1

Abstract

In this paper, authors examine flows with a finite hyperbolic chain-recurrent set without heteroclinic intersections on arbitrary closed n-manifolds. For such flows, the existence of a dual attractor and a repeller is proved. These points are separated by a (n−1)-dimensional sphere, which is secant for wandering trajectories in a complement to attractor and repeller. The study of the flow dynamics makes it possible to obtain a topological invariant, called a spherical flow scheme, consisting of multi-dimensional spheres that are the intersections of a secant sphere with invariant saddle manifolds. It is worth known that for some classes of flows spherical scheme is complete invariant. Thus, it follows from G. Fleitas results that for polar flows (with a single sink and a single source) on the surface, it is the spherical scheme that is complete equivalence invariant.
有限双曲链循环集的球面流程图
本文研究了任意闭合n流形上无异斜交的有限双曲链循环集流。对于这种流,证明了双吸引子和双排斥子的存在性。这些点被一个(n−1)维球体隔开,这个球体是割线,对于在吸引子和排斥子的补充中徘徊的轨迹。流动动力学的研究使我们有可能得到一种拓扑不变量,称为球形流动格式,它由具有不变鞍形流形的割线球的交组成的多维球体组成。值得注意的是,对于某些类型的流,球面格式是完全不变的。因此,从G. Fleitas的结果可以得出,对于表面上的极流(单汇单源),球面格式是完全等价不变的。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 求助全文
来源期刊
CiteScore
0.30
自引率
0.00%
发文量
0
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:604180095
Book学术官方微信